저해상도 하수관거의 균열을 탐지하기 위해서 웨이블릿 기법을 이용하여 연구를 수행하였다. 변수 4개를 설정하여 파라미터 연구를 수행하였으며 기존 CNN 기법의 연구와 비교를 통해 타당성을 검증하였다. 연구 결과 본 연구에 제시된 파라미터 변수들의 기본값만 사용하더라도 97.2%의 높은 정확도를 나타내었으며, 정확도가 들쭉날쭉하지 않고 안정성을 나타내었다. 따라서, 웨이블릿 기법을 활용하여 구조물의 균열 등 결함 인식 등의 문제를 잘 해결할 것으로 판단되며 향후 연구로 딥러닝 기법과의 상호 보완적인 방법을 모색하고자 한다.
In this study, the wavelet technique was used to detect cracks in low-resolution sewage pipes. A parameter study was conducted using four variables, and the validity was verified by comparing the results of the wavelet technique with those of the currently used CNN technique. The results show that, even if only the default values of the parameter variables presented in this study are used, the accuracy is 97.2%, is not jagged, and shows stability. As such, the wavelet technique can be used to recognize defects like cracks in structures. Future research should seek a complementary method that uses the deep learning technique.