The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.
저해상도 하수관거의 균열을 탐지하기 위해서 웨이블릿 기법을 이용하여 연구를 수행하였다. 변수 4개를 설정하여 파라미터 연구를 수행하였으며 기존 CNN 기법의 연구와 비교를 통해 타당성을 검증하였다. 연구 결과 본 연구에 제시된 파라미터 변수들의 기본값만 사용하더라도 97.2%의 높은 정확도를 나타내었으며, 정확도가 들쭉날쭉하지 않고 안정성을 나타내었다. 따라서, 웨이블릿 기법을 활용하여 구조물의 균열 등 결함 인식 등의 문제를 잘 해결할 것으로 판단되며 향후 연구로 딥러닝 기법과의 상호 보완적인 방법을 모색하고자 한다.
Since sewer rehabilitation program requires long construction period and enormous capital investment, determination of rehabilitation priorities is important with systematic planning considering appropriate evaluation parameters. In this research, we applied PROMETHEE(Preference Ranking Organization METHod for Evaluations) known as very objective and scientific multi-criteria decision-making analysis, using the weights determined by AHP(Analytic Hierarchy Process) for the selected sewer evaluation items to calculate the rehabilitation priorities for each sewer sub-catchment in basin Gusan 1 of Seoul. Preference functions and preference thresholds were estimated for each criterion of ratio of lack of hydraulic capacity of sewers, defect ratio, ratio of sewers with velocity less than its minimum criteria, and density of sewers in the sub-catchment. As a result, it was found that region d had the first priority among four sub-catchments. For each and every sewer located in region d, we could also rank sewers to be rehabilitated urgently.
Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η ) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.
When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a “combined sewer system.” The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.
This study is to improve the efficiency of BTL (Build Transfer Lease) project operation by comparing the infiltration rate based on the data of 5 years of infiltration of the separate sewer system and combined sewer system. In the survey site, the separate sewer system area consists of eight flowmeters in seven treatment basins, and the combined sewer system area consists of eight flowmeters in five treatment basins. The infillration rate was analyzed by night-time domestic flow evaluation method, and the average infiltration rates of the separate sewer system and combined sewer system were 13% and 16%, respectively. Combined sewer system was about 1.3 times higher than the separate sewer system. The average BOD of separate sewer system was 233 mg/L, which was about 2.4 times higher than the combined sewer system was 107 mg/L. In the comparison of the average pipe diameter-length infiltration of separate sewer system and combined sewer system, the separate sewer system and the combined sewer system were about 0.150 m3/d/mm/km and about 0.109 m3/d/mm/km, respectively. The floating population in mixed residential and commercial areas has been identified as the cause. Therefore, we propose a method to calculate the infiltration rate in consideration of the margin ratio in the area where the night active population is concentrated.
This study was conducted to analyze the characteristics of odorous components that have been generated from the downtown sewer system based on twenty-three survey items for complex odor and designated offensive odor. As a result of the research, the contribution rates for the causative materials of the odor indicated 73.5% of hydrogen sulfide, 26.0% of methyl mercaptan, 0.4% of dimethyl sulfide, and 0.1% of dimethyl disulfide. The occurrence for the odorous materials according to sampling site revealed data of which contribution rates showed 56.9% of hydrogen sulfide and 36.8% of methyl mercaptan from the combined sewer system in the business district; whereas the combined sewer system in the residential area showed 16.4% of dimethyl sulfide and 4.3% of dimethyl disulfide. The seasonal occurrence rate of the odor materials was observed higher in summer and lower in winter And, the combined sewer system in the business district recorded the highest concentration of 4.61 ppm of hydrogen sulfide among the sampling site. An hourly occurrence rate for the odor materials consistently showed the greatest increase between 11:00 and 14:00 at each location and showed a decreasing tendency afterward.
Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.
The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.
If sewage flows for an extended time at low velocities, solids may be deposited in the sewer. Sufficient velocity or tractive force should be developed regularly to flush out any solids that may have been deposited during low flow periods. This study aims to evaluate the periods (T) during which sewage flow greater than the minimum tractive force maintains on a spot in sewer pipe system with lower tractive force or lower velocity than expected in the design step, when a storage tank installed in a place upsteam pours water into the sewer. The effect to T of design factors of storage tank and sewer pipes was evaluated assuming the uniform flow in sewers. When the area of orifice in the storage tank is 0.062 ㎡(or 0.28 m diameter), the maximum T of 31sec was maintained using the usually used preset range of values of several design factors. As the horizontal cross section of storage tank and water depth of storage tank and roughness in sewers increase, T linearly increases. Also, T linearly decreases as the diameter of a sewer pipe increases. Although T gradually decreases as the sewer pipe slope decreases to around 0.005, T decreases sharply when the slope is less than 0.003.
PURPOSES: The purpose of this study is to identify the mechanism of road subsidence caused by damaged water and sewer pipes.
METHODS: A series of soil chamber test using damaged water and sewer pipe models were conducted under various conditions.
RESULTS : Characteristics of cavity expansion and collapse caused by damaged pipes were affected by the damaged location in the sewer pipe, the head on the water pipe, the distance between the damaged water pipe and outlet, and relative soil density.
CONCLUSIONS: Sewer-pipe damage was considered a direct cause of road subsidence, and the cavity expanded discontinuously. When the outlet was located under the damaged water pipe, the cavity expanded in the water pipe’s direction, and collapse occurred above the pipe. However, when the outlet was located atop the damaged water pipe, the cavity expanded toward the outlet direction and resulted in a subsidence. Cavity expansion speed was affected by various conditions, such as the pipe’s water head, outlet position, distance between the damaged water pipe and outlet, and relative soil density. However, the cavity expansion shape did not affect factors, except for outlet position.
Urban sanitary sewer systems can aid in preventing inundation, and can improve civil health by effectively disposing stormwater and wastewater. However, since sewage odor can cause adverse effects, numerous technical and administrative studies have been conducted for reducing such odor. European countries and the United States of America (USA) built modern sewer systems in the late 19th century, and have since been endeavoring to eliminate sewage odors. Several cities of the USA, such as Los Angeles (LA) that has a separate sewer system and San Francisco (SF) that has a combined sewer system, have produced and distributed odor control master plan manuals. Features common in the odor reduction plans of both these cities are that the odor reduction programs are operated in all the respective local regions and are supported by administrative systems. The primary aspectual difference between the two said programs is that the city of LA employs a sewage air purification system, whereas the city of SF controls the emission of major odor causing compounds. Compared to the existing sewer odor reduction systems of these two cities, South Korea is still in the initial phase of development. Through technical studies and policy implementations for sewer odor reduction, a foundation can be laid for improving the civil health quality.
Due to the sewer induced ground subsidence, there is an increasing demand for the advanced visual inspection technique for the existing sewer pipe structures. This study aim to develop a new condition assessment method using visual inspection device with automatic crack extracting and real-time gas monitoring systems for large diameter glass-fiber reinforced plastic sewer pipes. In this paper, a high-precision image capturing system that automatically extracts cracks in the large-diameter sewer pipes and sewage culverts with a diameter of 1,000 mm or more, and a real-time gas detection sensor for investigator safety were considered. By analyzing the module technology of the visual inspection device, the test device and their software for system integration were developed. It is expected that the developed technique inspecting conditions of the GFRP sewer pipes using the proposed visual inspection device in this study can be effectively used for various types of underground structures in the future.
As the modern society is rapidly developing and people become affluent in materials, many new chemical compounds in different forms of products (e.g., antibiotics, pesticides, detergents, personal care products and plastic goods) are produced, used, and disposed of to the environments. Some of them are persistently having a harmful impact on the environment and mimicking endocrine properties; in general they are present in the environment at low concentrations, so they are called organic pollutants. These organic micropollutants flow to sewage treatment plants via different routes. In this study, the generation characteristics, exposure pathways, detection levels, and environmental impacts of organic micropollutants were critically reviewed. In addition, currently available risk assessment methods and management systems for the compounds were reviewed. The United States Environmental Protection Agency (US EPA), for example, has monitored organic micropollutants and set the monitoring and management of some of the compounds as a priority. To effectively manage organic micropollutants in sewer systems, therefore, we should first monitor organic micropollutants of potential concern and then make a watch list of specific substances systematically, as described in guidelines on listing water pollutants in industrial wastewater.
Deep learning techniques have been studied and developed throughout the medical, agricultural, aviation, and automotive industries. It can be applied to construction fields such as concrete cracks and welding defects. One of the best performing techniques of deep running is CNN technique. CNN means convolutional neural network. In this study, we analyzed crack recognition of sewer with low recognition. Deep learning is generally more accurate with deeper layers, but analysis cost is high. In addition, many variations can occur depending on training options. Therefore, this study performed many parametric studies according to the variations of training options. When analyzed with appropriate training options, the accuracy was over 90% and stable results were obtained
In this study, we suggested the jacking method of small diameter sewer pipe for improving workability of the pipe at the weak ground. The jacking method minimizes the space and time in constructing small diameter sewer pipe. In addition, to use this method do not cause road restrictions during the construction period. In this study, the construction process of the small diameter sewer pipe is explained. In addition, to ensure the safety during construction, the design consideration such as earth pressure and the jacking force of the steel pipe, and safety against boiling of the ground were examined. For verify the safety of this jacking method, it is necessary to carry out an experiment to estimate the safety of main pipe under construction.
Due to the sewer induced ground subsidence, there is an increasing demand for the advanced visual inspection technique for the existing sewer pipe structures. This study aim to develop a visual inspection device and real-time transmission system of inspection data with precisely evaluated structural and operational conditions of underground sewer pipe structures. In this paper, a high-precision image capturing system that automatically extracts cracks in the large-diameter sewer pipes and sewage culverts with a diameter of 1,000 mm or more, a real-time gas detection sensor for investigator safety were studied. By analyzing the module technology of the visual inspection device, the concept design for system integration was derived, and the real time transmission system of the inspection result was developed to establish the technical basis for the commercialized device. Also the crack detection test using crack calibration was carried out for the proposed image capturing camera system, and the position accuracy using L1 grade GPS module was tested in this study. The inspection technique of the existing structure condition using the visual inspection device in this study can be effectively used for various structures types and advanced composite structures in the future.
This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of ‘Hole’ were extended to 5 levels of the grading, and ‘Surface Damage’ was excluded in defect assessment. The addition of ‘Buckling’ resulted in reduction of weights in ‘Surface Damage’ and ‘Lining Defects’.
Sewer condition assessment involves the determination of defective points and status of aged sewers by a CCTV inspection according to the standard manual. Therefore, it is important to establish a reliable and effective standard manual for identifying the sewer defect. In this study, analytic reviews of the CCTV inspection manuals of the UK, New Zealand, Canada and South Korea were performed in order to compare the defect codes and the protocols of condition assessment. Through this, we also established the standardized method for defect code and revised the calculation method of assigning the condition grade. Analyses of the types and frequencies of sewer defects that obtained by CCTV inspection of 7000 case results, showed that the joint defect and lateral defect were the most frequent defects that occurred in Korea. Some defect codes are found to be modified because those did not occur at all. This study includes a proposed new sewer defect codes based on sewer characteristics.