This study was conducted to analyze the characteristics of odorous components that have been generated from the downtown sewer system based on twenty-three survey items for complex odor and designated offensive odor. As a result of the research, the contribution rates for the causative materials of the odor indicated 73.5% of hydrogen sulfide, 26.0% of methyl mercaptan, 0.4% of dimethyl sulfide, and 0.1% of dimethyl disulfide. The occurrence for the odorous materials according to sampling site revealed data of which contribution rates showed 56.9% of hydrogen sulfide and 36.8% of methyl mercaptan from the combined sewer system in the business district; whereas the combined sewer system in the residential area showed 16.4% of dimethyl sulfide and 4.3% of dimethyl disulfide. The seasonal occurrence rate of the odor materials was observed higher in summer and lower in winter And, the combined sewer system in the business district recorded the highest concentration of 4.61 ppm of hydrogen sulfide among the sampling site. An hourly occurrence rate for the odor materials consistently showed the greatest increase between 11:00 and 14:00 at each location and showed a decreasing tendency afterward.
In this study, indoor radon concentrations were measured in 56 multiple-use facilities located in Gwangju area from December 2017 to December 2018. The average indoor radon concentration in underground space was 51.70 Bq/m3, and that of the 1st floor was 38.73 Bq/m3, indicating that the indoor radon concentration of underground space was higher than that of the 1st floor. The indoor radon concentration was investigated according to the presence or absence of underground space. The concentration of radon on the 1st floor with underground space was 37.25 Bq/m3, and the concentration of radon on the ground floor without underground space was 47.94 Bq/m3. In the absence of underground space, indoor radon concentration was high. The indoor radon concentration of buildings over 30 years old was 87.26 Bq/m3, indicating a significantly higher indoor radon concentration compared to those of buildings less than 30 years old. The indoor radon concentration was investigated according to the operation of a ventilator. The indoor radon concentration of space without an operating ventilator was 52.17 Bq/m3, and that of space with a ventilator in operation for more than 8 hours per day was 36.31 Bq/m3. This result shows that the indoor radon concentration in the space with an operating ventilator is lower than the space where the ventilator is not in operation. The indoor radon concentration in the space with an operating ventilation system was lower than that on the same floor of the same building, and the indoor radon concentration of enclosed space was about 4.4 times higher than that of open space in the same building. In addition, the indoor radon concentration was measured according to the spatial features. The concentration of indoor radon of enclosed space was 64.76 Bq/m3, which is higher than those of an open space and an active space.
This study was conducted to investigate the influence of moisture removal using a moisture condensation tube on the odor concentration, when sampling a malodorous substance from an odor discharge facility’s emission sites. For high-temperature and humid gas streams, the odor concentration was decreased through the use of a moisture condensation tube. The multiple odor concentration of the high-temperature and humid gas streams emitted from boiler-burning equipment decreased from a 3,000 to a 1,221 dilution factor when using one or two moisture condensation tube. This multiple odor concentration was further decreased to a 1,000 dilution factor by using two moisture condensation tubes and glass beads, and also was decreased to a 374 dilution factor by using two moisture condensation tubes and silicagel. Among the designated offensive odorous substances, ammonia, trimethylamine and acetaldehyde that have high solubility in water showed high reduction rate of their concentration. Compared to the result using a sampling tube only, the concentration was decreased by 94.8% ~ 97.7% for ammonia, by 87.5% ~ 95.9% for trimethylamine and by 100% for acetaldehyde. The findings of this study indicate that sampling using a moisture condensation tube affects the concentration of multiple odors. Therefore, it is considered that using a sampling tube only for emissions sampling enhances analytical accuracy and precision rather than using moisture condensation tube with sampling tube, even for the emissions containing moisture.