검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To mitigate carbon emissions, the government aims to transition to renewable energy sources including hydrothermal energy, specifically through wastewater heat recovery. This process involves extracting heat from wastewater or treated water. However, assessments of demand sources for local cooling and heating have predominantly focused on the proximity of nearby facilities, without conducting comprehensive demand analyses or defining explicit supply areas. This study proposes a methodology for prioritizing suitable wastewater treatment plants (WWTPs) for the implementation and expansion of renewable energy. The methodology is based on the gross floor area of potential wastewater heat demand surrounding WWTPs. Initially, potential supply and demand sources were identified based on the capacity of WWTPs and the gross floor area of buildings capable of utilizing wastewater heat. In the Republic of Korea, 330 WWTPs with a capacity of 5,000 m3/day or more have been recognized as demand sources for wastewater heat recovery. The provision of treated wastewater to structures located within a 500 m radius of the WWTPs for heat recovery is considered a feasible option. The potential wastewater heat demand and renewable energy cluster were identified among the surrounding buildings and complexes A total of 13 potential supplies were identified, provided that the gross floor exceeded 60,000 m². Finally, after prioritizing based on WWTPs with these conditions, the underground plant located in the downtown area was ranked as the highest priority. If further analysis of economic feasibility, CO2 reduction, and energy efficiency are conducted, this approach can be expanded and applied within the framework the Water-Energy Nexus. Wastewater heat can be utilized not only as a renewable energy source but also as a means to enhance wastewater reuse through the supply of treated wastewater.
        4,300원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.
        4,800원
        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 20-kHz ultrasonic irradiation was applied to investigate bacterial inactivation and antibiotic susceptibility changes over time. Applied intensities of ultrasound power were varied at 27.7 W and 39.1 W by changing the amplitude 20 to 40 to three bacteria species (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). By 15-min irradiation, E. coli, a gram-negative bacterium, showed 1.2- to 1.6-log removals, while the gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus, showed below 0.5-log removal efficiencies. Antibiotic susceptibility of penicillin-family showed a dramatic increase at E. coli, but for other antibiotic families showed no significant changes in susceptibility. Gram-positive bacteria showed no significant differences in their antibiotic susceptibilities after ultrasound irradiation. Bacterial re-survival and antibiotic susceptibility changes were measured by incubating the ultrasound-irradiated samples. After 24-hour incubation, it was found that all of three bacteria were repropagated to the 2- to 3-log greater than the initial points, and antibiotic inhibition zones were reduced compared to ones of the initial points, meaning that antibiotic resistances were also recovered. Pearson correlations between bacterial inactivation and antibiotic susceptibility showed negative relation for gram-negative bacteria, E. coli., and no significant relations between bacterial re-survival and its inhibition zone. As a preliminary study, further researches are necessary to find practical and effective conditions to achieve bacteria inactivation.
        4,600원
        4.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.
        4,000원
        5.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of ‘Hole’ were extended to 5 levels of the grading, and ‘Surface Damage’ was excluded in defect assessment. The addition of ‘Buckling’ resulted in reduction of weights in ‘Surface Damage’ and ‘Lining Defects’.
        4,000원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sewer condition assessment involves the determination of defective points and status of aged sewers by a CCTV inspection according to the standard manual. Therefore, it is important to establish a reliable and effective standard manual for identifying the sewer defect. In this study, analytic reviews of the CCTV inspection manuals of the UK, New Zealand, Canada and South Korea were performed in order to compare the defect codes and the protocols of condition assessment. Through this, we also established the standardized method for defect code and revised the calculation method of assigning the condition grade. Analyses of the types and frequencies of sewer defects that obtained by CCTV inspection of 7000 case results, showed that the joint defect and lateral defect were the most frequent defects that occurred in Korea. Some defect codes are found to be modified because those did not occur at all. This study includes a proposed new sewer defect codes based on sewer characteristics.
        4,300원
        7.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the RDII predictions were compared using two methodologies, i.e., the RTK-based and regression methods. Long-term (1/1/2011~12/31/2011) monitoring data, which consists of 10-min interval streamflow and the amount of precipitation, were collected at the domestic study area (1.36 km2 located in H county), and used for the construction of the RDII prediction models. The RTK method employs super position of tri-triangles, and each triangle (called, unit hydrograph) is defined by three parameters (i.e., R, T and K) determined/optimized using Genetic Algorithm (GA). In regression method, the MovingAverage (MA) filtering was used for data processing. Accuracies of RDII predictions from these two approaches were evaluated by comparing the root mean square error (RMSE) values from each model, in which the values were calculated to 320.613 (RTK method) and 420.653 (regression method), respectively. As a results, the RTK method was found to be more suitable for RDII prediction during extreme rainfall event, than the regression method.
        4,000원
        8.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.
        4,000원
        9.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The determining the appropriate dosage of coagulant is very important, because dosage of coagulant in the coagulation process for wastewater affects removing the amount of pollutants, cost, and producing sludge amount. Accordingly, in this study, in order to determine the optimal PAC dosage in the coagulation process, CCD (Central composite design) was used to proceed experimental design, and the quadratic regression models were constructed between independent variables (pH, influent turbidity, PAC dosage) and each response variable (Total coliform, E.coli, PSD (Particle size distribution) (‹10 μm), TP, PO4-P, and CODcr) by the RSM (Response surface methodology). Also, Considering the various response variables, the optimum PAC dosage and range were derived. As a result, in order to maximize the removal rate of total coliform and E.coli, the values of independent variables are the pH 6-7, the influent turbidity 100-200 NTU, and the PAC dosage 0.07-0.09 ml/L. For maximizing the removal rate of TP, PO4-P, CODcr, and PSD(‹10 μm), it is required for the pH 9, the influent turbidity 200-250 NTU, and the PAC dosage 0.05-0.065 ml/L. In the case of multiple independent variables, when the desirable removal rate for total coliform, E.coli, TP, and PO4-P is 90-100 % and that for CODcr and PSD(‹10 μm) is 50-100 %, the required PAC dosage is 0.05-0.07 ml/L in the pH 9 and influent turbidity 200-250 NTU. Thus, if the influent turbidity is high, adjusting pH is more effective way in terms of cost since a small amount of PAC dosage is required.
        4,000원
        10.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To perform long-term sewer monitoring, It is important to understand the nature of the wastewater flow that occurs at the point on early stage of the monitor and to prevent in advance a problem which may caused. We can infer the flow properties and external factors by analyzing the scatter graph obtained from the measured data flow rate monitoring data since an field external factor affecting the sewage flow is reflected in the flow rate monitoring data. In this study, Selecting the three points having various external factors, and we Inferred the sewer flow characteristics from depth-velocity scatter graph and determined the analysis equation for the dry-weather flow rate data. At the‘point 1’expected non-pressure flow, we were able to see the drawdown effect caused by the free fall in the manhole section. At the‘point 2’, existed weir and sediments, there was backwater effect caused by them, and each of size calculated from the scatter graph analysis were 400 mm and 130 mm. At the‘Point 3’, there is specific flow pattern that is coming from flood wave propagation generated by the pump station at upstream. In common, adequate equations to explain the dry weather flow data are flume equation and modified manning equation(SS method), and the equations had compatibility for explaining the data because all of R2 values are over 0.95.
        4,000원
        11.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A ≻ carbamazepine ≻ sulfamethoxazole ≻ diclofenac ≻ ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature (40 ◦C) than lower temperature (10 ◦C#x25E6;C).
        4,600원
        12.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        터널 내 축적된 다양한 오염원들은 간헐적으로 수행되는 세척과정 중에 폐수로 배출되게 되며, 서울 시내 3개 터널 지점에서 수행된 수질분석결과 SS, CODCr, T-N, NH3-N, NO3-N, Zn, Cu, Cr(+6). Mn, Mg, Phenol. CN-, E-Coli 등이 고농도 형태로 배출되는 것으로 나타났다. 한편, 이러한 오염수질의 배출농도 특성은 터널 세척 폐수의 채취 방법, 세척횟수, 세척수량, 터널내벽 특성, 통행량, 배수 특성 등에 따라 다양한 농도범위를 보여주는 것으로 나타났다. 한편, 수집된 터널 세척폐수를 단순 중력침전을 이용하여 저감실험을 수행한 결과, CODCr는 80%, T-N, T-P는 각각 30, 90% 제거됨을 확인하였고, 중력침전 분리를 통하여 제거되지 않은 잔여 오염물질에 대하여 GAC 소재를 통한 흡착실험(터널 세척폐수 1l에 대하여 GAC를 50g을 투입) 결과, CODCr, T-N, Zn, Cu, Mn, Phenol, CN 항목에서 80% 이상 제거됨을 확인하였다.
        4,000원
        1 2