간행물

상하수도학회지 KCI 등재 Journal of the Korean Society of Water and Wastewater

권호리스트/논문검색
이 간행물 논문 검색

권호

제28권 제2호 (2014년 4월) 10

1.
2014.04 구독 인증기관 무료, 개인회원 유료
Capacitive deionization(CDI) has many advantages over other desalination technologies due to its low energy consumption, less environmental pollution and relative low fouling potential. The objectives of this study are evaluate the performance of CDI which can be used for dissolved salts removal from sewage. To identify ion selectivity of nitrate and phosphate in multi-ionic solutions and adsorption/desorption performance related to applied potential, a series of laboratory scale experiments were conducted using a CDI unit cell with activated carbon electrodes. The CDI process was able to achieve more than 75 % TDS and NO3-, NH4+ removals, while phosphate removal was 60.8 % and is inversely related in initial TDS and H3- concentration. In continuous operation, increasing the inner cell pressure and reduction of TDS removal ability were investigated which are caused by inorganic scaling and biofouling. However a relative mild cleaning solution(5 % of citric acid for calcium scaling and 500 mg/L of NaOCl for organic fouling) restored the electrochemical adsorption capacity of the CDI unit to its initial level.
4,000원
2.
2014.04 구독 인증기관 무료, 개인회원 유료
It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove NH4-N below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.
4,000원
3.
2014.04 구독 인증기관 무료, 개인회원 유료
In this study, a novel method was proposed to test the integrity of water treatment system specifically equipped with membrane filtration process. We applied the silica particles coated with a fluorescent agent (rhodamine B isothiocyanate) as a surrogate to detect a membrane process integrity and evaluate the reliability of effluent quality in the system. Additionally, a series of experiments was conducted to evaluate the sensitivity of the method through the laboratory scale experiment. The laboratory scale experiments showed that the feasibility of application of proposed method to detect a breach or damaged part on the membrane surface. However, the sensitivity on predicting the area of a breach was significantly influenced by the testing conditions such as a concentration of surrogate, filtration flux, and detection time. The lowest error of predicting the area of breach was 3.5 % at the testing condition of surrogate concentration of 80 mg/L injected with flux of 20 L/m2/hr for 10 minutes of detection time for the breach having the actual area of 7.069 mm2. However, the error of estimation was increased at the small breach with area less than 0.785 mm2. A future study will be conducted to estimate a damaged area with more accuracy and precision.
4,000원
4.
2014.04 구독 인증기관 무료, 개인회원 유료
Various treatment system for residuals have applied to save water resources, but most of them were not be satisfied with legal standard consistently. In this study, submerged membrane treatment system was operated to treat water treatment plant residuals and operation parameters was evaluated. Result of this experiment, high concentration organic matters contributed to high increase Transmembrane pressure(TMP) of membrane system(from 0.05 bar to 0.35 bar). And backwash process was effective to stabilize membrane system operation. After Cleaning-In-Place(CIP), permeability was recovered about 100 % from first operation condition. Inorganic matters (Fe, Mn, Al, Ca, Mg) were not effective membrane filtration performance. The quality of residual treatment was satisfied with drinking water quality standard and a treated water from that system was suitable for water reuse.
4,500원
5.
2014.04 구독 인증기관 무료, 개인회원 유료
Immobilization of anaerobic ammonium oxidizing bacteria has been studied to enhance the biomass retention of the slowly growing bacteria and the process stability. The purpose of this study was to compare the nitrogen removal efficiency of granular and immobilized anammox bacteria with poly vinyl alcohol and alginate. The specific anammox activity of the granular, homoginized and immobilized anammox bacteria were 0.016±0.0002 gN/gVSS/d, 0.011±0.001 gN/gVSS/d and 0.007±0.0005 gN/gVSS/d, respectively. Although the activity decreased to 43.7 % of the original one due to low pH and O2 exposure during the homogination and the immobilization, it was rapidly recovered within 7 days in the following continuous culture. When synthetic T-N concentrations of 100, 200, 400, 800 mg/L were fed, the immobilized anammox bacteria showed higher nitrogen removal efficiencies at all operational conditions than those of granular anammox bacteria. When the sludge retention time was shorten below 30.7 days and the reject water was fed, the nitrite removal efficiency of the granular anammox bacteria dropped to 8 % of the initial value, while that of the immobilized anammox bacteria was maintained over 95 % of the initial one. The immobilization with poly vinyl alcohol and alginate would be a feasible method to improve the performance and stability of the anammox process.
4,300원
6.
2014.04 구독 인증기관 무료, 개인회원 유료
Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and Na2S·9H2O were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and Na2S·9H2O reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in Na2S·9H2O compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with Na2S·9H2O. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.
4,000원
7.
2014.04 구독 인증기관 무료, 개인회원 유료
In order to suggest the methodology for improving the equity of flow distribution in open channel with multiple outlet, CFD simulations were carried out for actual scale distribution channel being operated in domestic G_WTP(Water Treatment Plant). Also, before and after installing the longitudinal multi hole(diameter=250 mm, 116 holes) baffle suggested by this research, turbidity measurements data were collected for evaluating the effects of hydraulic modification for inlet flow equity. From the both results, total turbidity of settled water was lowered by 30 % and equity of flow distribution was improved about 60 % compared with before hydraulic structure modification.
4,000원
8.
2014.04 구독 인증기관 무료, 개인회원 유료
This paper presents a Computational Fluid Dynamics(CFD) based simulation and experimental tracer test of flow pattern and turbulent energy dissipation inside a serpentine flocculation basin with continuous operation. Research focused on the evaluation of a specific flow pattern on the hydraulic behavior on the flocculation basin. From the results of CFD simulation and actual tracer test, both results were in good accordance with each other. Also, each Morill index were calculated as 1.5 from CFD simulation and 1.7 from actual tracer test, respectively. Especially, turbulence energy was dissipated relatively higher in the vicinity of inlet to the flocculation basin than other region. The differences between the CFD simulation and actual tracer test were 1.4 min in T50, and 1.3 min in Tp, respectively.
4,000원
9.
2014.04 구독 인증기관 무료, 개인회원 유료
The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A ≻ carbamazepine ≻ sulfamethoxazole ≻ diclofenac ≻ ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature (40 ◦C) than lower temperature (10 ◦C#x25E6;C).
4,600원
10.
2014.04 구독 인증기관 무료, 개인회원 유료
So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.
4,000원