간행물

상하수도학회지 KCI 등재 Journal of the Korean Society of Water and Wastewater

권호리스트/논문검색
이 간행물 논문 검색

권호

제36권 제6호 (2022년 12월) 10

1.
2022.12 구독 인증기관 무료, 개인회원 유료
Due to the rapid growth of electrical vehicle and portable electronics markets, huge amount of the rare earth elements (REEs) and lithium have been required for the manufacturers globally. Moreover, after life time of the battery pass, the waste batteries containing valuable metal resources should be recycled due to competitions between the countries who manufacturing the batteries. Therefore, the REEs and lithium recoveries from the e-waste and wastewaters become issue recently. However, the commercialized technology for the valuable metal recovery is limited. In this study, the uses of the REEs and other valuable metal resources such as lithium, uranium, and gold and there recoverying methods according to the different water conditions were investigated and summarized. Moreover, the possible expectations and suggestions for the future application of the valuable resource recovery were conducted as a review.
4,000원
2.
2022.12 구독 인증기관 무료, 개인회원 유료
The management of algal bloom is essential for the proper management of water supply systems and to maintain the safety of drinking water. Chlorophyll-a(Chl-a) is a commonly used indicator to represent the algal concentration. In recent years, advanced machine learning models have been increasingly used to predict Chl-a in freshwater systems. Machine learning models show good performance in various fields, while the process of model development requires considerable labor and time by experts. Automated machine learning(auto ML) is an emerging field of machine learning study. Auto ML is used to develop machine learning models while minimizing the time and labor required in the model development process. This study developed an auto ML to predict Chl-a using auto sklearn, one of most widely used open source auto ML algorithms. The model performance was compared with other two popular ensemble machine learning models, random forest(RF) and XGBoost(XGB). The model performance was evaluated using three indices, root mean squared error, root mean squared error-observation standard deviation ratio(RSR) and Nash-Sutcliffe coefficient of efficiency. The RSR of auto ML, RF, and XGB were 0.659, 0.684 and 0.638, respectively. The results shows that auto ML outperforms RF, and XGB shows better prediction performance than auto ML, while the differences between model performances were not significant. Shapley value analysis, an explainable machine learning algorithm, was used to provide quantitative interpretation about the model prediction of auto ML developed in this study. The results of this study present the possible applicability of auto ML for the prediction of water quality.
4,000원
3.
2022.12 구독 인증기관 무료, 개인회원 유료
The anaerobic digestion process produces methane while stabilizing sludge. As of 2020, 62 anaerobic digesters in public wastewater treatment plants are operational in Korea. Many researchers have studied to improve digester performance. Thermal hydrolysis technology is one of the pre-treatment methods for treating sludge. Reduced retention time and enhanced biogas production are the main advantages of sludge disintegration at relatively high temperatures and pressures. But nutrients like nitrogen and phosphorus are released from the pre-treated sludge. Phosphorus is a non-renewable resource that is essential to food production. Wastewater receives 20% of the total phosphate discharge, while 90% of the influent phosphorus load is in sludge. For efficient phosphorus recovery, it is essential to comprehend the phosphorus release characteristics during wastewater treatment, including anaerobic digestion. Biological or chemical processes can achieve phosphorus removal to comply with the effluent discharge limits regulations. The three primary sources of phosphorus in sludge are aluminum-bound phosphorus (Al-P), polyphosphate in phosphorus-accumulating organisms (PAOs), and iron-bound phosphorus (Fe-P). Anaerobic digestion is the typical method for recovering carbon and phosphorus. However, previous research has demonstrated that most phosphorus in anaerobic digestion occurs as a solid phase coupled with heavy metals. Therefore, the poor mass transfer rate results in a slow phosphorus release. Due to the recent growth in interest and significance of phosphorus recovery, many researchers have studied to improve the quantity of phosphorus released into the liquid phase through chelation addition, process operation optimization, and disintegration using sludge pre-treatment. The study aims to investigate characteristics of the phosphorus release associated with the thermal hydrolysis breakdown of sludge and propose a method for recovering phosphorus in a wastewater treatment plant. When solubilizing sludge using thermal hydrolysis pre-treatment, organic phosphates, inorganic phosphates, and polyphosphates are converted into ortho-phosphate. Therefore, applying thermal hydrolysis, anaerobic digestion, and phosphorus recovery processes (struvite formation or microbial electrolysis cells) can recover carbon and phosphorus.
4,200원
4.
2022.12 구독 인증기관 무료, 개인회원 유료
In this study, as the proportion of aged pipelines increases rapidly, in the event of an accident caused by corrosion and structural deterioration of metal pipes, appropriate overlay welding is applied in the field to partially repair it. The size of the base steel plate and the selection of a stable welding method were evaluated, and possible problems caused by the overlay welding were identified, and improvement measures were proposed. For the test, a new steel pipe coated with epoxy lining on the inner surface and polyethylene on the outer surface was subjected to a tensile test by processing the repaired specimen through overlay welding with a steel plate after artificial cracking, and structural safety was evaluated after repair. Furthermore, the influences of the size of the throat and the size of the steel plate were analyzed. As a result of the tensile test by dividing the repaired steel plate overlay into a constraint and non-constraint conditions, the tensile load was concentrated in the welded part and damage occurred in the welded part. It was found that the maximum load leading to breakage increases as the size of the welding throat increases. In addition, it was found that the resistance to load increased slightly as the size of the overlaid steel plate increased, but the effect was not significant, confirming the need for repair in consideration of the site conditions. As a result of evaluating the damage to the coating material on the back side of the welding, it was confirmed that the coating material on the opposite side of the welding burned black(epoxy) or was greatly deformed by heat(polyethylene). Therefore, it is necessary to secure structural stability through repainting, etc. in order to prevent damage to the coating material on the opposite side during overlay welding.
4,300원
5.
2022.12 구독 인증기관 무료, 개인회원 유료
The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.
4,500원
6.
2022.12 구독 인증기관 무료, 개인회원 유료
This study set up the revenue water ratio that could be achieved within the range of the expenses of the water distribution network maintenance project, developed an analysis methodology that could estimate the additional project quantity to achieve the target revenue water ratio of 85% and applied and verified that to S. City. This methodology allowed the distribution of the leakage quantity for each leakage component by the pipeline through the total revenue water account balance analysis and BABE approach and the redistribution into the calculated leakage quantity more accurately through a step test. In addition, the level of reduction in leakage and the quantity of the project were estimated before and after the application of four strategies for the promotion of the revenue water ratio presented by IWA, according to the leakage components by the pipeline. As a result of the application of this analysis method to S. City, it would be possible to achieve up to the revenue water ratio of 81.0%, which was 74.7% in the beginning, if the water distribution network maintenance project was promoted within the range of the project expenses, and to achieve the revenue water ratio of 85.0%, the goal of the project, it would be necessary to replace the pipeline of 22.2% of the entire pipelines in the target area. As a result of the re-estimation of the revenue water ratio achievable, applying the actual water distribution network maintenance quantity in the scope of the business with the results of this analysis, the revenue water ratio was 81.7% while the actually measured revenue water ratio was 82.3%. Thus, the reliability of this analysis method could be secured to some extent.
4,600원
7.
2022.12 구독 인증기관 무료, 개인회원 유료
국내 Y정수처리시설에 20-40 m3/m2/h의 표면부하율을 갖는 고속 용존공기부상공정을 도입하였다. 우선, 용존공기부상공정과 입상활성탄 공정이 결합된 반응기를 일처리용량 500 m3/day의 조건으로 운전하였다. 운전결과는 두 공정이 원수내 탁도, 조류, 지오스민, 2-MIB를 감소시킬 수 있음을 증명하였다. 도출된 최적 설계요소를 활용하여 현장규모의 공정(5,000 m3/day)에 용존공기부상공정을 도입하였다. 여름철 56일간 조류와 탁도 제거율을 평가하였다. 처리수 내 조류의 개체수는 20-30 cells/mL 이하로 유지되었으며, 조류 제거효율은 80-89%를 기록하였다. 침전법 및 용존공기부상공정 처리수질의 탁도 제거효율을 비교한 결과 평균 탁도 제거효율은 77%를 나타냈다. 이러한 결과들은 고속 용존공기부상공정이 여름철 음용수의 탁도 및 조류와 같은 저밀도 고형물을 제거하는데 유의미한 방법임을 나타냈으며, GAC는 맛・냄새를 유발하는 화합물(지오스민, 2-MIB)를 제거할 수 있는 공정 옵션인 것을 확인하였다.
4,300원
8.
2022.12 구독 인증기관 무료, 개인회원 유료
The CDI (Capacitive deionization) is one of the desalination technologies that use a carbon material electrode with large surface area and excellent electrical conductivity. Recently, research on a MCDI (Membrane Capacitive deionization) process, which is a combination of an ion-exchange membrane, has been actively conducted. In this study, we tried to find out the water quality of treated water and the concentration characteristics of concentrated water through TDS analysis by MCDI conventional and circulation process. In producing treated water, there was no significant difference in adsorption efficiency between MCDI conventional and circulation process. It was confirmed that both processes adsobed more than 96 %. However, the MCDI conventional process showed a low yield of 50 %, whereas the MCDI circulation process showed a high yield of 97.6 %. It's because, the wasted water was reused at desorption. In the case of the TDS concentration using MCDI circulation process, as the cycle progressed, the TDS concentration was concentrated up to 1,300 mg/L, but the rate gradually decreased. It is believed that this is because the volume of the concentrated water tank is limited, and the amount of soluble ions gradually decreases. As a result of analyzing the wasted water at MCDI circulation process through Ion Chromatography, it was confirmed that the concentration of all ions were concentrated. However, there was no significant difference in the types and proportions of analyzed ions. It is judged that the types and concentration of ions do not have a significant effect on adsorption and desorption in the MCDI circulation process.
4,000원
9.
2022.12 구독 인증기관 무료, 개인회원 유료
The “Carbon Neutral” has become the most important goal to achieve in the era of the climate change crisis. K-water has prepared a roadmap for implementing “Carbon Neutral” by 2050. However, only the reduction targets and strategies for scope 1 and 2 have been set, so the management of carbon generated during the construction project and upfront carbon is not being implemented. Therefore, in this study, the criteria and methodology for estimation carbon emissions in the construction sector at domestic and foreign were reviewed, and a methodology for estimation carbon emissions suitable for K-water construction projects was presented, and a case study was conducted. As a result, most of the carbon emissions were more than 90% of the upfront emissions due to material production. Therefore, upfront carbon management is required for carbon management of K-water construction projects, and it is necessary to quantify carbon emissions through GHG construction inventory, etc., and to establish strategies for future reduction technologies.
4,500원
10.
2022.12 구독 인증기관 무료, 개인회원 유료
This study was conducted to identify the distribution characteristics of the impervious area in urban watersheds and to reduce the deviation of the impervious area ratio that occurs depending on the degree of construction of land surface condition data. The average impervious area ratio by land use that can be applied to the calculation of the urban impervious area ratio was derived by statistically analyzing the distribution characteristics of the impervious area ratio by land use according to the urban watershed conditions. In urban watersheds, the change in impervious area ratio over the past 20 years has continuously increased in watersheds with an impervious area ratio of less than 60%, and decreased in watersheds with a high impervious area ratio of 60% or more. The average impervious area ratio by land use applicable to the land use technique is “Residential area” 84.0%, “Residential and commercial mix” 93.6%, “Commercial and business facilities” 89.8%, “Industrial land” 84.8%, “Public land” 47.3%, “Transportation facility” 93.3%, “Urban revitalization facility” 61.1%, “Bare land” 17.6%, “Special area” 11.4%, “Forest and open space” 3.5%, “Rivers and lakes” 9.2%. As a result of examining the adequacy of the average impervious area ratio by land use, the difference between the calculated value of the impervious area ratio using land use techniques and the actual impervious area ratio of the biotope map ranged from -3.0%p to 2.6%p at the significance level of 95%. In addition, when the watershed condition is applied, the difference ranged from -2.3%p to 1.7%p. By applying the average impervious area ratio by land use derived in this study, it was found that the impervious area ratio of the target urban watershed could be calculated within a deviation of ±3%p.
4,200원