Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.
The chemical structures of perfluorinated compounds(PFCs) have unique properties such as thermal and chemical stability that make them useful components in a wide variety of consumer and industrial products. Two of these PFCs, perfluorooctane sulfonate(PFOS) and perfluorooctanoic acid(PFOA), have received attention and were the most commonly detected. In this study it was analyzed the concentrations of 8 PFCs in samples were collected from drinking water treatment plants for 5 years(2012-2016). PFOS and PFOA were also high concentration and frequency. The mean concentrations of PFOA and PFOS were detected 0.0026-0.0069 μg/L and 0.0009-0.0024 μg/L in samples from drinking water treatment plants. These were relatively lower or similar compared to PFOS concentrations in Osaka(Japan). In general, these levels are below health-based values set by international authoritative bodies for drinking water. These results will be serve as the first monitoring data for PFCs in drinking water and be useful for characterizing the concentration distribution and management of PFCs in future studies.
In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc. . Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux 2 m3/m2・day. But in Flux 5 m3/m2・day, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux 10 m3/m2・day, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and UV254 showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.
Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model’s applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.
Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.
Membrane filtration process is an advanced water treatment technology that has excellently removes turbidity and microorganisms. However, it is known that it has problems such as low economic efficiency and the operating stability. Therefore, this study was to evaluate on the economical feasibility and operational stability comparison of membrane and sand filtration process in Im-sil drinking water treatment plant. For the economic analysis of each process, the electricity cost and chemical consumption were compared. In the case of electric power consumption, electricity cost is 68.67KRW/㎥ for sand filtration and 79.98KRW/㎥ for membrane filtration, respectively. Therefore, membrane filtration process was about 16% higher than sand filtration process of electricity cost. While, the coagulant usage in the membrane filtration process was 43% lower than the sand filtration process. Thus, comparing the operation costs of the two processes, there is no significant difference in the operating cost of the membrane filtration process and the sand filtration process as 85.94KRW/m3 and 79.71KRW/m3 respectively (the sum of electricity and chemical cost). As a result of operating the membrane filtration process for 3 years including the winter season and the high turbidity period, the filtrated water turbidity was stable to less than 0.025 NTU irrespective of changes in the turbidity of raw water. And the CIP(Clean In Place) cycle turned out to be more than 1 year. Based on the results of this study, the membrane filtration process showed high performance of water quality, and it was also determined to have the economics and operation stability.
In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of 2.13 kgf/cm2, but it was recovered to the initial level (0.17 kgf/cm2) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.
As the modern society is rapidly developing and people become affluent in materials, many new chemical compounds in different forms of products (e.g., antibiotics, pesticides, detergents, personal care products and plastic goods) are produced, used, and disposed of to the environments. Some of them are persistently having a harmful impact on the environment and mimicking endocrine properties; in general they are present in the environment at low concentrations, so they are called organic pollutants. These organic micropollutants flow to sewage treatment plants via different routes. In this study, the generation characteristics, exposure pathways, detection levels, and environmental impacts of organic micropollutants were critically reviewed. In addition, currently available risk assessment methods and management systems for the compounds were reviewed. The United States Environmental Protection Agency (US EPA), for example, has monitored organic micropollutants and set the monitoring and management of some of the compounds as a priority. To effectively manage organic micropollutants in sewer systems, therefore, we should first monitor organic micropollutants of potential concern and then make a watch list of specific substances systematically, as described in guidelines on listing water pollutants in industrial wastewater.
It is not cost effective to raise the density of catch basins in preparation for heavy rainfall in terms of construction and maintenance. Our researchers have developed the new catch basin for increasing interception capacity of runoff with internal filtration structure. To compare interception capacity of an existing catch basin with the invented catch basin, a hydraulic experiment device with 4% of road gradients and 0.2% of road gradients was constructed. For runoff conditions of 4.4 l/s, 6.7 l/s and 10.4 l/s, capability of runoff and separation capability of debris (sand and leaves) were evaluated. As the main experimental results, the effectiveness of the developed catch basin has been verified with an increase in interception rate of approximately 22% for the runoff of 6.7 l/s as heavy rainfall. However, the results of invented catch basin showed only 4.5% of settlement rate of debris regarding sand. Therefore, the authors proposed an improved tilted screen structure additionally. After reviewing the performance of improved catch basin, application of the invented catch basin is expected to drain runoff effectively when it is applied to the faulty road drainage section.
One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.
This study aimed to develop a method to optimize residual chlorine concentrations in the process of providing water supply. To this end, this study developed a model capable of optimizing the chlorine input into the clearwell in the purification plant and the optimal installation location of rechlorination facilities, and chlorine input. This study applied genetic algorithms finding the optimal point with appropriate residual chlorine concentrations and deriving a cost-optimal solution. The developed model was applied to SN purification plant supply area. As a result, it was possible to meet the target residual chlorine concentration with the minimum cost. Also, the optimal operation method in target area according to the water temperature and volume of supply was suggested. On the basis of the results, this study derived the most economical operational method of coping with water pollution in the process of providing water supply and satisfying the service level required by consumers in the aspects of cost effectiveness. It is considered possible to appropriately respond to increasing service level required by consumers in the future and to use the study results to establish an operational management plan in a short-term perspective.
Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.
Recently, applications of high voltage impulse (hereafter HVI) technique to desalting, sludge solubilization and disinfection have gained great attention. However, information on how the operating condition of HVI changes the water qualities, particularly production of hydroxyl radical (·OH) is not sufficient yet. The aim of this study is to investigate the effect of operating conditions of the HVI on the generation of hydroxyl radical. Indirect quantification of hydroxyl radical using RNO which react with hydroxyl radical was used. The higher HVI voltage applied up to 15 kV, the more RNO decreased. However, 5 kV was not enough to produce hydroxyl radical, indicating there might be an critical voltage triggering hydroxyl radical generation. The concentration of RNO under the condition of high conductivity decreased more than those of the low conductivities. Moreover, the higher the air supplies to the HVI reactor, the greater RNO decreased. The conditions with high conductivity and/or air supply might encourage the corona discharge on the electrode surfaces, which can produce the hydroxyl radical more easily. The pH and conductivity of the sample water changed little during the course of HVI induction.
As the 3D laser scanning technology capable of databaseing large sewage box culverts becomes possible, it is necessary to develop a standardization manual that can clearly distinguish the structural and operational defect types of box culver and analyze the defect data. In this study, we collected and analyzed defects in sewage box culverts of 14,827m in total by selecting three districts in Korea. The major defects were surface damages, and their defect densities were 2.17 m2/m, 0.27 m2/m and 0.10 m2/m for aggregate exposure, Steel reinforcement exposure, and Steel reinforcement projecting. In order to support the decision of the box culverment management, it was divided into five grades and each defect code and defect score were allocated. The results of this study are useful for the diagnosis of the sewage box culverts in Korea and it is expected to support a decision making for management.