검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the membrane process, it is important to improve water treatment efficiency to ensure water quality and minimize membrane fouling. In this study, a pilot study of membrane process using reservoir water was conducted for a long time to secure high flux operation technology capable of responding to influent turbidity changes. The raw water and DAF(Dissolved Air Flotation) treated water were used for influent water of membrane to analyze the effect of water quality on the TMP (Trans Membrane Pressure) and to optimize the membrane operation. When the membrane flux were operated at 70 LMH and 80 LMH under stable water quality conditions with an inlet turbidity of 10 NTU or less, the TMP increase rates were 0.28 and 0.24 kPa/d, respectively, with minor difference. When the membrane with high flux of 80 LMH was operated for a long time under inlet turbidity of 10 NTU or more, the TMP increase rate showed the maximum of 43.5 kPa/d. However, when the CEB(Chemically Enhanced Backwash) cycle was changed from 7 to 1 day, it was confirmed that the TMP increase rate was stable to 0.23 kPa/d. As a result of applying pre-treatment process(DAF) on unstability water quality conditions, it was confirmed that the TMP rise rates differed by 0.17 and 0.64 kPa/d according to the optimization of the coagulant injection. When combined with coagulation pretreatment, it was thought that the balance with the membrane process was more important than the emphasis on efficiency of the pretreatment process. It was considered that stable TMP can be maintained by optimizing the cleaning conditions when the stable or unstable water quality even in the high flux operation on membrane process.
        4,000원
        9.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 지중구조물은 지상구조물보다 지진하중 작용 시 상대적으로 작은 영향을 받는다. 그러나 많은 연구자들은 심각한 지중구조물 손상에 대해 보고하고 있으며 동적 흙-구조물 상호작용에 대한 지속적인 연구를 수행하고 있다. 본 연구에서는 유한요소해석 프로그램을 활용한 흙-구조물 상호작용을 지중구조물에 적용하고 지중구조물 하중저감기법인 ETI의 지오폼을 해석변수로 경감효과 및 최적 지오폼을 제안하고자 한다. 해석연구에 고려된 지오폼은 EPS 12, EPS 15, EPS 19이다. 해석 결과로부터 지진하중시 최대 50%까지 지중하중이 경감되었으며, 수평처짐은 26%, 수직처짐은 8%이 경감되었다. 본 해석연구를 토대로 ETI 공법을 적용한 지중구조물이 정적 및 지진하중 하에서도 하중의 영향을 경감시키는 것을 확인할 수 있었다.
        4,000원
        12.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main purpose of this study is to explain fishery relation in the seas surrounding Korea and how the Prisoner’s Dilemma (PD), within game theory is applied to the region and suggest possible co-operative approaches in the region. The seas surrounding Korea are very productive fishing grounds with abundant fisheries resources because of the favourable marine environment, including its geographical features and physical oceanography. Nevertheless, Fishery relations among the coastal states in the region have been historically characterized by conflict rather than co-operation. Based on the PD game where there is always an incentive to do better by not co-operating, in order to ensure a share of the short-run benefits, fishing countries in the region have so far pursued the non-co-operative strategy of ‘don’t fish responsibly’ rather than the co-operative strategy of ‘fish responsibly’. Considering rapidly deteriorating situations in terms of fishery resources, regional co-operation among coastal states is urgently required to eliminate overfishing and increase fish stocks to sustainable levels. The West Sea/East China Sea and the East Sea, semi-enclosed seas, have unitary ecosystems, and many migratory fish species are shared between coastal states. Therefore, one countries’ efforts alone cannot effectively manage and conserve the fishery resources and close co-operation among coastal states is required. The 1982 UN Convention and other international instruments emphasize the role of RFOs in managing and conserving capture fisheries and encourage states to establish Regional Fishery organizations (RFOs) or strengthen existing RFOs to facilitate conservation and management for fish stocks. Therefore, an international regime is worthy of serious consideration in that it provides fundamental advantages for the conservation of fish stocks for the fishery characteristic of the region.
        5,100원
        13.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to develop the innovative application methodology of Geofoam for sustainable design of eco-bridges under deep soil cover. Traditionally, the soft maerial zone has been located on the top or above the buried conduit to reduce the earth pressures, which is called imperfect trench installation (ITI). There, however have been no previous studies for the application of ITI on buried arch structures. This study investigated the structural effects of Geofoam surrouding buried arch bridges, which was named as embedded trench installation (ETI). Various shapes and locations of Geofoam have been investigated for both ETI and ITI. The findings from this study showed that ETI could effectively increase the stability and sustainability of deeply buried eco-bridges.
        4,000원
        14.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of chemically enhanced backwash(CEB) coping with algal(Heterosigma Akashiwo) inflow was evaluated in the seawater desalination pretreatment process using ceramic membrane. In order to confirm the possibility of long-term filtration operation, the recovery rate of transmembrane pressure(TMP) due to the CEB using NaOCl was examined. When the membrane flow rate was 83.3 LMH, the TMP was maintained within 200 kPa for 84 hours in seawater influent. As the algal counts of 30,000 cell/mL were injected into the influent of seawater, however, the TMP rapidly increased and exceed maximum value. Membrane fouling caused by the algae was very poorly recovered by usual physical backwash. The CEB was performed for 30 min(3 min circulation / 27 min immersion) with 300 mg/L of NaOCl. As a result of the CEB application, it was possible to maintain a stable operating of filtration during 10 days and the average recovery rate of TMP by the CEB was 98.1%. It has been confirmed that the CEB using NaOCl is very effective in removal of membrane fouling by algae, resulted in stable membrane filtration for the long-term operation.
        4,000원
        15.
        2018.04 구독 인증기관·개인회원 무료
        In order to solve the limitation of the long span arch structures, a numerical analysis was carried out to investigate the effects of embedded trench installation technique to the earth pressure of an underground arch-rib shaped structure. For the arch-rib shape, the parabolic curve and the circular shape were analyzed according to the span-rise ratio varying from 0.1 to 0.5. The finite element analysis program, ABAQUS (2016), was used to consider the soil - structure interaction. The results from the analysis was verified through comparison with the existing Geofoam application technique.
        16.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than 5 m3/m2・day. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.
        4,200원
        17.
        2018.04 구독 인증기관 무료, 개인회원 유료
        This research investigates the effects of trench installation methods with expanded polystyrene (EPS) geofoam on the behavior of buried corrugated steel arch structure. A universal finite element analysis program, ABAQUS, was used to model and analyze the structure. For this study, the S275 corrugated steel with a profile of 152x51mm and the arch has fixed boundary condition. The structure was analyzed for three different configurations, namely; without EPS geofoam, imperfect trench installation (ITI), and embedded trench installation (ETI). ITI and ETI cases were further divided depending on the width and height of EPS geofoam. The width of EPS geofoam varies from the span of the arch up to a 30% increase of the span of the arch while its height varies from the rise of the arch upto 100% increase of the rise of the arch. The results from the finite element analysis revealed that the ETI reduced the wall stresses by at least 53.95%. It is recommended to conduct further study regarding ETI to validate the results and to further improved the design criteria of buried corrugated steel arch as it is expected to bring about cost reduction and stability for buried structures.
        3,000원
        18.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of 2.13 kgf/cm2, but it was recovered to the initial level (0.17 kgf/cm2) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.
        4,200원
        19.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc. . Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux 2 m3/m2・day. But in Flux 5 m3/m2・day, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux 10 m3/m2・day, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and UV254 showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.
        4,000원
        20.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This project investigated the use of two types of thermoplastic pipes, High-Density Polyethylene (HDPE) and Poly-vinyl Chloride (PVC), as cross-drains under highways. Pipes ranging from 0.3 m (12 in.) to 1.5 m (60 in.) in diameter were evaluated under deep fills, minimum cover, and construction loads. In addition to a comprehensive literature review, an analytical study into the allowable fill heights for thermoplastic pipes and a field study to observe the installation and performance of the pipe in service conditions were conducted. Based on the study findings, recommendations regarding how and when thermoplastic pipe should be installed are provided.
        4,000원
        1 2