Water cycle within the human civilization has become important with urbanization. To date, water cycle in the eco-system has been the focus in identifying the degree of water cycle in cities, but in practicality, water cycle within the human civilization system is taking on an increasing importance. While in recent years plans to reuse water have been implemented to restore water cycle in cities, the effect that such reuse has on the entire water cycle system has not been analyzed. The analysis on the effect that water reuse has on urban areas needs to be go beyond measuring the cost-savings and look at the changes brought about in the entire city’s water cycle system. This study uses a SWAT model and water balance analysis to review the effects that water reuse has on changes occurring in the urban water cycle system by linking the water cycle within the eco-system with that within the human civilization system. The SWAT model to calculate the components of water cycle in the human civilization system showed that similar to measured data, the daily changes and accumulative data can be simulated. When the amount of water reuse increases in urban areas, the surface outflow, amount of sewer discharge and the discharged amount from sewage treatment plants decrease, leading to a change in water cycle within our human civilization system. The determinant coefficients for reduced surface outflow amount and reduced sewer discharge were 0.9164 and 0.9892, respectively, while the determinant coefficient for reduced discharge of sewage treatment plants was 0.9988. This indicates that with an increase in water reuse, surface flow, sewage and discharge from sewage treatment plants all saw a linear reduction.
Deposits discharged through the cleaning mainly were cement mortar, bitumen paintings and rust pieces, and fragments of perforation, stones and gravels. Deposits were more removed through swabbing pig cleaning rather than air scouring cleaning on the whole. However, air scouring cleaning were not influenced by the constraint conditions such as a change in the diameter or the presence of the valve in water mains compare to swabbing pig cleaning. So, it was thought that air scouring cleaning might be more favorable to water distribution network cleaning in the future. After the cleaning, water quality including residual chlorine and turbidity also was improved because of the removal of a significant amount of the deposits. Therefore, if the cleaning is continuously and regularly implemented in water mains, it is expected that it will help to recover the reliability and to preserve the health of water quality.
This study have been conducted to analyze the feasibility of establishing Contamination Warning System(CWS) that is capable of monitoring early natural or intentional water quality accidents, and providing active and quick responses for domestic C_water supply system. In order to evaluate the water quality data set, pH, turbidity and free residual chlorine concentration data were collected and each statistical value(mean, variation, range) was calculated, then the seasonal variability of those were analyzed using the independent t-test. From the results of analyzing the distribution of outliers in the measurement data using a high-pass filter, it could be confirmed that a lot of lower outliers appeared due to data missing. In addition, linear filter model based on autoregressive model(AR(1) and AR(2)) was applied for the state estimation of each water quality data set. From the results of analyzing the variability of the autocorrelation coefficient structure according to the change of window size(6hours~48hours), at least the window size longer than 12hours should be necessary for estimating the state of water quality data satisfactorily.
The aim of this study was to evaluate the chemical quenching system for residual ozone and to determine the operating condition for the quenching system. Hydrogen peroxide (H₂O₂) and sodium thiosulfate (Na₂S₂O₃) were investigated as quenching reagents for ozone removal, and the tendency of each chemical was notably different. In the case of H₂O₂, the degradation rate of ozone was increased as the concentration of H₂O₂ increase, and temperature and pH value have a significant effect on the degradation rate of ozone. On the other hand, the degradation rate of ozone was not affected by the concentration of Na₂S₂O₃, temperature and pH value, due to the high reactivity between the S₂O₃²- and ozone. This study evaluates the decomposition mechanism of ozone by H₂O₂ and Na₂S₂O₃ with consideration for the water quality and reaction time. Furthermore, the removal test for the quenching reagents, which can be remained after reaction with ozone, was conducted by GAC process.
In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class Ⅰ to Ⅳ areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class Ⅱ~Ⅲ areas, from 10mg/L to 5mg/L in class Ⅳ areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.
The objective of this study is to analyze the investment adequacy of the projects implemented according to the master plan on sewerage rehabilitation at Seoul. The planned and actually implemented ratio of invested money on sewage treatment plants (STPs) to sewers were compared in two temporal periods. Though the planned ratio of investment on STPs to sewers was 50:50 (in 2009-2020) , the actual implemented ratio in 2009-2013 was 34:66. Until 2020, the greater investment ratio on STPs to sewers should be made considering the necessity of coping with stricter legal compliance on advanced treatment, stormwater treatment and so on. The priority of the planned and partially implemented projects among four STPs and at each STP was evaluated. Considering only the performance indicator of reduced load of BOD, T-N, T-P per the capacity of each STP facility, the performance among four STPs was shown as Jung-Rang>Tan-Cheon>Seo-Nam>Nan-Ji. The reverse order of the performance results in the past may be considered for future investment priority, but the efficiency of operation implemented at each STP, deteriorated status of each STP, investment in the past and so forth should also be considered. As for the priority of projects conducted within each STP, projects related to legal compliance (such as advanced tertiary treatment, stormwater treatment, etc.) have highest priority. Odor-related project and inhabitant-friendly facility related projects (such as building park on STPs, etc.) has lower priority than water quality related projects but interactivity with end-users of sewerage should also be important.
Korea's modern waterworks began with construction of DDukdo water treatment plant in 1908 and has been growing rapidly along with the country’s economic development. As a result, water supply rates have reached 98.5% based on 2013. Despite multilateral efforts for high-quality water supply, such as introduction of advanced water treatment process, expansion of waterworks infrastructure and so on, distrust for drinking tap water has been continuing and domestic consumption rate of tap water is in around 5% level and extremely poor comparing to advanced countries such as the United States(56%), Japan(52%), etc. Recently, the water management has been facing the new phase due to water environmental degradation caused by climate change, aging facilities, etc. Therefore, K-water has converted water management paradigm from the "clean and safe water" to the "healthy water“ and been pushing the Smart Water City(SWC) Pilot Project in order to develop and spread new water supply models for consumers to believe and drink tap water through systematic water quality and quantity management combining ICT in the whole water supply process. The SWC pilot projects in Pa-ju city and Go-ryeong county were an opportunity to check the likelihood of the "smart water management" as the answer to future water management. It is needed to examine the necessity of smart water management introduction and nationwide SWC expansion in order to improve water welfare for people and resolve domestic & foreign water problems.
It has been widely accepted that the pressure management of water distribution systems using pressure reducing valves(PRVs) would be an effective method for controlling leakages. A pressure reducing valve (PRV) regulates outlet pressure regardless of fluctuating flow and varying inlet pressure, thereby reducing leakage and mitigating the stress on the water distribution system. However, the operation of a PRV is vulnerable to its mechanical condition and hydraulic operability. In this research, the effect of PRVs installed in water distribution system are evaluated in terms of hydraulic pressure reduction and mechanical performance by analyzing measured pressure data with statistical approach. A statistical approach using the moving average filter and frequency analysis based on fourier transform is presented to detect abnormally operated PRVs that have been densely installed in water distribution system. The result shows that the proposed approach can be a good performance evaluation method by simply measuring pressures for the PRVs.