Constant rate permeat experiments using polyethylene hollow fiber membranes were conducted in order to treat dam water for potable purposes. The experiments consisted of two series. One series consisted of six bench scale apparatuses, each having a $0.4m^2$ nominal permeat area, which were applied in determining the optimum operating conditions. The other series was comprised of two pilot scale plant, each having a $40m^2$ nominal permeat area. Both series were operated for six months. Coagulant was not used in any of the experiments. To suppress an increase in differential pressure between the inlet and outlet of the membrane, a hydrophilic membrane was found to be better than a hydrophobic membrane. Also, permeat flux should not be more than 0.03m/h, and air bubbling-washing for 1 minute should be conducted at 180 minutes intervals or less.
Emission of hazardous and volatile organic chemicals from solid waste landfill site was become to important issue because of environmental pollution and health risk by such chemicals. Laboratory batch and continuous experiments were conducted respectively to elucidate isothermal sorption behaviors and transport phenomena(by gas through unsaturated solid waste layer) in wet solid waste-gas system. Source separated and size reduced refuse(bulky waste) and incinerated ash were used after controlling water content, and trichloroethylene(TCE) was chosen among many such chemicals because of it's generality among those man-created pollutants. Isothermal TCE sorption equilibria wet solid waste-gas system can be described in linear equation and partition coefficient in this system can be estimated approximately by the simple equation derived from schematic structure of the system. Transport equation modified by instantaneous equilibrium sorption fraction and kinetic sorption rate(overall mass transfer capacity coefficient) simulated well the column experiment results.
The effects of chlorine dioxide on the oxidation of phenol and disinfection were studied in the various test water conditions. With the 0.3mg/l of chlorine dioxide dose, the spiked phenol(initial concentration: 0.1mg/l) was completely oxidized within 10 minute. The removal rate of phenol was much faster in distilled water than in ground water and filtered water. The applied dose of chlorine dioxide concentrations higher than 0.2mg/l was sufficiently enough for the complete oxidation of phenol. However, with 0.1mg/l of dose, chlorine dioxide can oxidize only 20% of the spiked phenol. The reactive substances present in test water may influence the chlorine dioxide demand in water. pH effect of oxidation rate was also investigated. Increasing the pH, the removal rate of phenol was found to be increased. The disinfection test of chlorine and chlorine dioxide were conducted and compared. The lethal effect for the both disinfectants are similarly powerful. The time for 99% inactivation of E. coli was obtained within 120 sec with the 0.2mg/l of each dose.
An experimental study was conducted to investigate the effects of chlorine dioxide and ozone on reduction of THM(trihalomethane) formation. Precursor concentration, chlorine concentration, reaction time, pH, and temperature were governing compornents of THM formation. When other conditions are constant, THM formation increased linearly with precursor concentration increased. THM formation increased when pH increased from 5 to 9. In combined treatment with chlorine and chlorine dioxide, chlorine treatment after chlorine dioxide treatment made less THM than any other case does. Ozonation reduced THMFP(THM formation potential) of THM precursor. THMFP decreased exponentially with reaction time increased. Also biodegradability of humic acid was enhanced by ozonation.
In this experimental study, it is concerned to develop a simple equation using jar-test results in order to predict the optimum dosage of coagulant, PAC(polyaluminum chloride). Considering the relationships with the reactions of coagulation and flocculation, the four independent variables (e.g. turbidity, temperature, pH and alkalinity) are selected out of many parameters and they are put into calculations to develop an equation by means of multi-regression method. As the result, the dosing rate of PAC is proportional to turbidity, pH and alkalinity, but in inverse to temperature. And the developed equation is as follow, D c = 3.2 ⋅ T 0.37 ⋅ A 0.04 ⋅ P 0.5 t 0.1 , ( R 2 = 0.9443 ) And also, comparing between the estimated value from the equation and the real dosing rate in the plant, Kwangam and Tdukdo, during 1988~1991, it is represented an agreement having a relative error of 16.4%, 17.8%, respectively.