간행물

복합신소재구조학회 논문집 KCI 등재 Journal of the Korean Society for Advanced Composite Structures

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 8 No. 4 (2017년 12월) 8

1.
2017.12 구독 인증기관 무료, 개인회원 유료
In recent years, single layer latticed domes have attracted many designers and researchers’s attention all over the world, because single layer latticed domes as space structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. Yamada developed the shape factor S which represents the shape of spherical latticed dome from a structural perspective as well as a geometric perspective. According to a prior study, the structural behavior and the buckling characteristics of the latticed dome were mostly noticeable when the shape factor of latticed dome was in the range of 1.5 to 5. That is, S, in the range of 1.5 to 5, are able to estimate not only overall buckling, but also member buckling and nodal buckling. In this study, we developed shape models using various size of members with the fixed rise-span ratio. One particular characteristic of the latticed dome is that it is not only light in weight but also high in strength. But the aiming at the use of light-weight materials and at the minimized section of members may result in buckling to cause an unstable state of the overall structure when the external force reaches a limitation. Especially, the structural strength is disadvantageous to the snow loads than the earthquake loads because of light-weight, and is greatly affected by the conditions of loading. This paper is to develop the structural stability according to the shapes and load conditions for single-layer latticed spherical dome with 300m span.
4,000원
2.
2017.12 구독 인증기관 무료, 개인회원 유료
Because of the economy and construction simplicity, Jacketing method has been widely used in strengthening RC columns in Korea. Although some studies on the compressive performance of jacketed elements have been conducted by experimental or analytical methods, the correlation between the axial performance and the surface roughness of the jacketed element has not been performed. In this study, the surface roughness of chipped surface of old element was measured and the compressive strength test was performed to evaluate the surface roughness and jacketed effects. The test results are as follows; (1) Compressive strength was improved by 1.8%∼3.1% by chipping, (2) Compressive performance of the jacketed elements reduced to 85%∼93% of theoretical values, (3) As a result of analysis of correlation between surface roughness index and axial strength, surface roughness index based on the wave length was more effective than existing methodology for evaluation surface roughness.
4,000원
3.
2017.12 구독 인증기관 무료, 개인회원 유료
Numerical analysis was performed to evaluate for reinforcing performance of RC beams in flexure strengthened with Textile Reinforced Mortar (TRM) in this study. New bond strength model for TRM based on the model proposed by Teng et al. was suggested to predict the flexural behavior of RC beams and effective stress in accordance with debonding of TRM. And reduce factor of 0.729 was suggested by investigation of results on the bending test of RC beams strengthened with TRM. Reliability of proposed bond strength model was verified through the comparisons between collected test results and predicted results about the ultimate load of RC beams occurred by debonding of TRM. The ratios of predicted results on the total experimental results, the average and coefficient of variation were 1.00 and 0.094, respectively. Also, nonlinear analysis method proposed by Cho et al. was used to predict the displacement at the cross-section of mid-span for RC beams in flexure strengthened with TRM. At the three state of the RC beams such as occurrence of initial flexural crack in tensile concrete, yield of tensile rebar, and ultimate in accordance with debonding of TRM. Displacements of beams were calculated at the three state and load-displacement curves by predicted results were compared to the collected test results.
4,000원
4.
2017.12 구독 인증기관 무료, 개인회원 유료
This paper presents experimental and analytical results for predicting tensile behavior of FRP Hybrid Bar(HYB). In order to confirm the tensile behavior of HYB wrapped with glass fiber reinforced polymer(GFRP) on deformed rebar, direct tensile tests were performed on 8 specimens. The diameter of the HYB was considered as a test variable and the tensile load, displacement, and tensile strain of each specimen were measured by tensile test. In order to predict the tensile behavior of HYB, numerical analysis based on tensile model of each material was performed. The tensile models of reinforcing bar, glass fiber, and resin, which are the constituent materials of HYB, are assumed to be simple shapes according to their material properties. The results of the numerical analysis through the strain compliance condition of each material were compared with the experimental results and both results showed consistent trends. The experimental and analytical ratios for yield and ultimate loads were 1.02 and 1.00, respectively, and the coefficient of variation were 3.61 and 2.54, respectively. However, a maximum of about 9 mm error occurred due to the slip generated by the direct tensile test in the comparison between the experimental results and the analytical results for the tensile displacement.
4,000원
5.
2017.12 구독 인증기관 무료, 개인회원 유료
As the national income grows, there is a growing demand for buildings that require long span structures such as exhibition facilities, sports facilities, special industrial facilities, and aerospace facilities. Single-layer latticed dome is one of representative llong span structures. But single layer latticed domes are apt to occur the unstable phenomena that are called “buckling” because of the lack of strength of members and instability of structures, etc. In the previous study, the structural stability of a single-layer lattice dome was roughly grasped by a frame structural system using a ready-made steel when a self-weight and a snow load were applied to a single-layer latticed dome having a span of 300 m and a height of 75 m. However, a systematic study of a 300m single layer lattice dome with various rise-span ratios was not performed. Therefore, it is necessary to study various conditions of this structure because the researchers do not have much research data to apply to actual design. Therefore, the purpose of this study is to verify the buckling characteristics of span 300M single-layer latticed dome with rise-span ratio
4,000원
6.
2017.12 구독 인증기관 무료, 개인회원 유료
The purpose of this study is to investigate the optimum conditions of dispersion and strength to maximize the mechanical properties of woody cellulose nano–crystal (CNC). As a dispersing method, ultrasonic dispersing machine and magnetic stirrer were used as the mechanical dispersion method. The mixing ratio of cellulose nano-crystals (CNCs) was 0.2% and the dispersion time was 10 minutes. Steam curing was carried out for 6, 24 and 48 hours. Based on the experimental results, we will propose source technology regarding CNC for construction materials.
4,000원
7.
2017.12 구독 인증기관 무료, 개인회원 유료
The Cellulose Nanocrystal (CNC) of dispersion condition is important factor when reinforce concrete or cement composite as CNC, because it is closely related to the strength reinforcement. Before the CNC is utilized to reinforcement of concrete or cement composite, it is essential to evaluate the dispersion properties. Therefore, the objective of the present study is to evaluate the dispersion of CNC. In this experiment, the specimen was prepared to the type of CNC suspension in accordance with weight ratio of CNC and the dispersion time of sonication. The first property, the dispersion properties of CNC, was evaluated by measuring turbidity and absorbance. The second property, the dispersion stability, was measured through the sediment time.
4,000원
8.
2017.12 구독 인증기관 무료, 개인회원 유료
Deep learning techniques have been studied and developed throughout the medical, agricultural, aviation, and automotive industries. It can be applied to construction fields such as concrete cracks and welding defects. One of the best performing techniques of deep running is CNN technique. CNN means convolutional neural network. In this study, we analyzed crack recognition of sewer with low recognition. Deep learning is generally more accurate with deeper layers, but analysis cost is high. In addition, many variations can occur depending on training options. Therefore, this study performed many parametric studies according to the variations of training options. When analyzed with appropriate training options, the accuracy was over 90% and stable results were obtained
4,000원