바이오차는 현재 토양개량제이자 탄소격리재로 사용되고 있으며, 건축산업에서 탄소격리에 관한 관심이 증가하고 있다. 본 연구에서는 목질계 바이오차를 시멘트 복합체에 함유하여 탄소격리효과의 가능성을 조사하는 것을 목표로 한다. 목질계 바이오차는 고탄소 물질로 수분을 흡수하는 특성이 있으며 시멘트 복합체에 함유하고자 할 때 시멘트와 비슷한 입도를 가져야한다. 혼입방법에 따라 바이오차를 함유한 시멘트 모르타르의 압축강도 특성을 평가하였으며, 시멘트를 바이오차로 1∼5% 치환하는 경우 Plain 대비 5∼12%까지 압축강도가 증진되는 것을 확인하였다.
원자력발전소에 설치되는 안전관련 기기는 높은 수준의 내진성능을 확보하여야 한다. 본 연구에서는 대표적인 안전관련 기기 인 전기 캐비닛을 대상으로, 열반(multi-bay) 구성 및 콘크리트 기초 열화와 같은 실제 설치 조건을 고려하여 내진성능을 평가하였다. 실제 현장에서는 전기 캐비닛이 열반 형태로 설치되는 경우가 많으며, 지지부 열화의 대표적 형태로 앵커 위치에서의 콘크리트 균열이 자주 발견된다. 이러한 조건을 반영하기 위하여, 앵커 위치에 균열 폭 0.5 mm 및 1.0 mm를 모사한 균열 기초와 건전한 기초를 대상 으로 실험체를 제작하였다. 실험체는 단순화한 전기 캐비닛 모델로서 단독(single-bay) 및 2기 열반(two-bay) 구성을 적용하였으며, 선설치 앵커로 고정 후 진동대를 이용한 한계상태 내진성능 실험을 수행하였다. 실험 결과, 균열이 없는 조건에서는 2기 열반 구성이 단독 구성보다 높은 내진성능을 보였다. 그러나 균열 조건에서는 2기 열반 구성에서 내진성능이 저하되는 경향이 나타난 반면, 단독 구성은 유의미한 성능 저하가 관찰되지 않았다.
건설 자재와 건설 폐기물의 환경적 영향에 대한 사회적 관심이 높아지고 있다. 고강도 콘크리트의 필요성이 점차 커짐에 따라, 본 연구에서는 서로 연관된 환경 문제에 대한 두 가지 잠재적 해결책을 검토하였다. 첫째는 재활용 콘크리트 골재의 사용량 증가 가능성이고, 둘째는 고로 슬래그를 시멘트로 활용(재활용)할 가능성이다. 일반적으로 재활용 골재를 사용하면 고강도 콘크리트의 강도 가 저하되는 것으로 알려져 왔다. 따라서, 본 연구에서는 재활용 골재 콘크리트의 배합비와 함량 변화를 분석하여 고층 건축에 재활용 골재가 실용적인지, 그리고 어떤 방식으로 활용되는지를 규명하고자 하였다.
본 논문은 형상기억합금으로 능동 구속된 콘크리트의 일축 압축거동을 예측하기 위한 해석적 연구이다. 일축 압축거동을 예측하기 위해 SMA로 능동 구속된 콘크리트에 대한 적합조건을 기반으로 유효 구속응력이 도출되었으며, 기존 모델에 기반한 응력-변 형률 모델을 이용하여 SMA로 능동 구속된 콘크리트의 일축 압축거동 예측 방법이 제안되었다. 제안된 모델에 대한 검증을 위해 선행 연구에 대한 실험데이터가 수집되었다. 제안 모델을 통한 예측 결과는 콘크리트의 최대 압축강도 및 최대 압축강도에 해당하는 변형률 에 대한 비를 각각 1.00 및 0.89로 예측하였으며, 콘크리트의 응력-변형률 곡선을 비교적 정확히 예측하는 것으로 나타났다.
콘크리트 구조물의 내ㆍ외부 보강재로 사용되는 CFRP(Carbon Fiber Reinforced Plastic) 그리드의 철근 대체 가능성을 확인하기 위해, 철도용 콘크리트 침목 내부에 CFRP 그리드를 보강한 후 유한요소 해석 프로그램인 ABAQUS를 활용하여 성능을 평가 하였다. 본 연구에서는 PC 강연선 대신 CFRP 그리드를 보강하고 하중을 재하한 결과, 피복두께 40 mm에서 최대 휨-인장 응력이 2.494 MPa로 도출되었으며 이는 KR CODE 2012의 허용응력 기준을 충족하는 값으로 나타났다. 추가적으로, 본 연구에서는 설계기준에 따라 하중 조건과 응력분포를 고려하여 중립축 위치와 CFRP 그리드의 배치를 최적화한 침목 단면설계를 진행하였다. ABAQUS 해석을 통해 침목의 휨 강도와 내구성을 평가한 결과, CFRP 그리드를 적용한 침목은 기존 PC 강연 선 보강 침목 대비 유사한 수준의 구조적 성능을 확보하면서도 경량화 측면에서 우수함을 확인하였다. 이를 통해 CFRP 그리드가 철근 을 대체하여 철도용 콘크리트 침목 설계에 적합한 보강재로 활용될 수 있음을 확인하였다.
본 연구는 동결융해 및 철근 부식으로 복합열화된 철근콘크리트 보를 탄소섬유 복합재료로 보강한 경우의 휨 거동을 평가하 기 위해 층상화 단면해석 모델을 제안하고 그 유효성을 실험적으로 검증하였다. 해석 모델은 열화에 따른 재료물성 저하와 CFRP 보강 효과를 통합적으로 고려하여 휨 거동을 예측하도록 구성되었다. 제안된 모델의 해석 결과, 열화 및 CFRP 보강 RC 보의 항복휨모멘트 와 최대휨모멘트 예측값은 실험값과 평균 1.01∼1.16의 비율을 보여 휨 성능을 매우 높은 신뢰도로 예측함을 확인하였다. 그러나 휨모 멘트-변위 관계에서는 일부 상이한 경향이 관찰되었다. 항복 이전 구간에서는 해석 모델의 휨 강성이 실험 결과보다 높게 평가되었는 데, 이는 해석 모델이 콘크리트의 초기 미세균열과 같은 비선형적 거동을 완벽히 반영하지 못하기 때문으로 분석된다. 반면, CFRP로 보강된 보의 항복 이후 구간에서는 해석 모델의 강성이 실험값보다 낮게 나타났다. 이는 현행 RC 이론 기반의 변위 산정 방식이 CFRP 보강재의 높은 탄성계수 효과를 충분히 반영하지 못하여 최대강도 도달 시의 변위를 과대평가하기 때문으로 판단된다.