Buckling, a form of failure happened to plated structures, is investigated in this study. The main focus is to investigate the effects of thickness of the plates having through-thickness holes on buckling when the plate is subjected to in-plane compression. Plates having length of 200mm and width of 100mm are chosen to have thickness in range from 0.50mm to 10mm. Two holes of diameters of 20mm are implemented in plates. The finite element procedure using ABAQUS is applied for analyses. Then using the Gerard and Becker equation compressive buckling coefficients, Kc, are calculated and presented to enable engineers to calculate buckling load for the desired plate with holes in specific dimension. In order to generalize the obtained results, verification analysis has been performed by taking plates having different dimensions from the original ones used in this study. The verification showed the capability of buckling coefficients to predict buckling stresses of plates in various dimensions.
Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.
Fiber reinforced plastic (FRP) structural shapes are readily available in civil engineering applications. Among many manufacturing techniques used for FRP structural shapes, pultrusion process is one of the most widely used techniques in civil engineering applications. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric plastic structural shapes with constant cross-section. Pultruded composites are attractive for structural applications because of their continuous mass production with excellent mechanical properties. This paper presents the results of investigations pertaining to the bolted connection with two bolts for the pultruded FRP (PFRP) structural members. PFRP bolted connection tests were conducted with end distance to bolt diameter ratio (e1/db) and two types of bolt pattern such as horizontal (Pattern A) and vertical arrangement (Pattern B). As a result, it is found that the e1/db is recommended as the ratio of 4. In addition, it is also found that the bearing strengths at failure of the Pattern A and Pattern B have a similar value.
Recently, sewer–pipe constructions replacing deteriorated pipes are currently underway in the downtown area. To resolve many problems in the conventional method of open-cut construction, lining-board system using light-weight GFRP panels is developed. The pultruded GFRP panels can be successfully used for the developed lining-board system as temporary decks and retaining walls in virtue of light weight, high strength and high durability. In this paper, the structural safety and serviceability of the lining-board system are examined through FE analyses and experiments. Further more, a field application of the lining-board system is presented. The field application shows that quality and environment of construction can be significantly improved.
This study analyzes performance-weight ratio of polycarbonate(PC) pigpen and steel pigpen. The finite element models using the ANSYS program described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the benefit of parameter study by using APDL. We have performed a parameter study by the width variation of PC pigpen. And we compared and analyzed the results of PC pigpen and steel pigpen. From the numerical examples, we confirmed the validity of PC pigpen.
Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.