간행물

복합신소재구조학회 논문집 KCI 등재 Journal of the Korean Society for Advanced Composite Structures

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 14 No. 6 (2023년 12월) 9

1.
2023.12 구독 인증기관 무료, 개인회원 유료
This study reports an experimental and analytical exploration of concrete columns laterally confined with Fe-based shape-memory alloy (Fe-SMA) spirals. For performing experiments, Fe-SMA rebars with a 4% prestrain and diameter of 10 mm were fabricated and concrete columns with internal Fe-SMA spiral reinforcement were constructed with a diameter of 200 mm and height of 600 mm. An acrylic bar with an attached strain gauge was embedded in the center of the specimen to measure local strains. Experimental variables encompassed the Fe-SMA spiral reinforcement, spacing, and activation temperature. Uniaxial compression tests were conducted after applying active confinement to the concrete columns through electrical-resistance heating. Notably, as the Fe-SMA spiral spacing decreased, the local failure zone length and compressive fracture energy of the prepared specimens increased. Additionally, a model incorporating compressive fracture energy was proposed to predict the stress–strain behavior of the. This model, accounting for active and passive confinement effects, demonstrated accurate predictions for the experimental results of this study as well as for previously reported results.
4,000원
2.
2023.12 구독 인증기관 무료, 개인회원 유료
Research is currently being conducted in the field of carbon reduction–related construction technologies, focusing on using industrial waste as a replacement for cement or as aggregates. However, the existing research is limited as carbon reduction is only achieved by reducing the amount of cement used. With the imperative of carbon neutrality, the development of carbon reduction technology is also necessary in the construction field. To address this, we plan to develop carbon reduction technology by introducing biochar—a carbon-sequestration material—into construction practices. Therefore, this study aims to comprehend the effect of the carbonization degree of biochar on the hydration reaction of cement, emphasizing the development of carbon-sequestration construction technology. Therefore, physical and chemical properties, such as surface and crystal structures, were analyzed to determine the effect of varying carbonization degrees on cement composites, contributing valuable insights into the broader field of sustainable construction.
4,000원
3.
2023.12 구독 인증기관 무료, 개인회원 유료
This study reports an analytical investigation on the development of SB4-grade separated concrete median barriers. The proposed barrier sections comprise three designs, with heights of 810, 1000, and 1270 mm and upper widths of 90, 120, and 120 mm, respectively. Before conducting collision analyses on the proposed sections, the considered collision analysis model was validated using real collision test results; the model was found to accurately predict the real collision test results. The proposed cross-sections were modeled to perform collision analysis according to SB4-grade collision conditions. Results indicated that increasing the cross-section height increased the damaged area and decreased the strength, while the occupant protection performance remained mostly unaffected. Furthermore, the proposed cross-sections met the strength and occupant protection performance criteria specified in domestic guidelines, suggesting their suitability as a separated concrete median barrier for bridges.
4,000원
4.
2023.12 구독 인증기관 무료, 개인회원 유료
Fiber-reinforced polymer (FRP) exhibits superior tensile strength and corrosion resistance compared to steel but has a lower elasticity. Recently, researchers have addressed this by proposing composite sections of FRP and concrete. To ensure the intended composite behavior, these FRP–concrete sections should exhibit sufficient stress transfer between the two elements through a shear connection. Herein, various shear connection methods were proposed to improve the composite behavior of glass fiber–reinforced polymer (GFRP) plates and concrete. Through push-out tests, the behavior characteristics of the prepared specimens were analyzed. The findings confirm that an FRP shear key (FSK) with a small cross-section resists high shear stresses, making it suitable for sections vulnerable to damage from bolt drilling. Additionally, combining an FSK with bolts as shear connectors on a GFRP plate proves beneficial in preventing the fracture of the plate and improving the shear resistance.
4,000원
5.
2023.12 구독 인증기관 무료, 개인회원 유료
Herein, the existing structural design criteria for highway bridge columns with hollow bars were analyzed. Expanding upon previous research focused on the performance analysis of the columns under compressive loads, load– displacement curves were evaluated and crack analysis was performed under cyclic transverse loads. A three-dimensional nonlinear finite-element structural analysis compared the structural performance of existing steel bars, same-reinforced hollow bars, and reduced hollow bars in detail. Results indicated that with regard to elastic or initial crack behavior, the existing steel bars can be replaced by the other bars. Future research should delve into inelastic behavior and strategies to ensure seismic performance.
4,000원
6.
2023.12 구독 인증기관 무료, 개인회원 유료
The asphalt concrete industry, accounting for >90% of road pavement, is a crucial contributor to construction waste. This study focuses on the recycling of asphalt concrete recycled aggregates, which currently exhibits a low rate. We investigated the application of these aggregates, combined with hardener and mixing water, in the development of ecofriendly road base materials using circular aggregates. Results revealed that the 13-mm asphalt concrete recycled aggregates met all quality standards. However, the 25-mm aggregates did not conform to the reclaimed asphalt content standard; however, they met other quality standards. Moreover, the experimental results for the hardener and mixing water indicated compliance with all quality standards.
4,000원
7.
2023.12 구독 인증기관 무료, 개인회원 유료
The design of buried underground flexible pipes proposed in domestic standards does not properly reflect changes in ground characteristics. Overseas standards suggest that pipe deflection must be considered while designing them. Therefore, in this study, the structural behavior of underground polyvinyl chloride pipes was investigated through experiments and the finite element analysis. In addition, when the pipe deflection occurred at 3% and 5%, the hydraulic characteristics of the polyvinyl chloride pipe showed a slight difference compared to the round pipe.
4,000원
8.
2023.12 구독 인증기관 무료, 개인회원 유료
Asphalt concrete, which is used as a road base material, accounts for >90% of a road pavement. A huge amount of waste concrete and waste asphalt concrete aggregates are generated. Recently, carbon neutrality is promoted across all industries for sustainability. Therefore, to achieve carbon neutrality in the asphalt concrete industry, waste asphalt concrete aggregates should be recycled. Additionally, road base materials are prepared using additives to ensure structural stability, durability, and economic efficiency. In this study, recycled asphalt concrete aggregates were used to evaluate the physical properties of road base materials according to the type of polymer additive and mixing method, and the applicability of road base each material was evaluated. Results showed that when the acrylate-based polymer additive was mixed, the uniaxial compressive strength was 30% higher. Furthermore, the compressive strength of the split mix was improved by ~29% compared to the total mix.
4,000원
9.
2023.12 구독 인증기관 무료, 개인회원 유료
Bellows expansion joints enhance the displacement performance of piping systems owing to their unique geometrical features. However, structural uncertainties such as wall thinning in convolutions, a byproduct of the manufacturing process, can impair their structural integrity. This study addresses such issues by conducting a global sensitivity analysis to assess the impact of these uncertainties on the performance of bellows expansion joints under monotonic loading. Global sensitivity analysis, which examines main and nth order interaction effects, is computationally expensive. To mitigate this, we employed a surrogate model-based approach using an artificial neural network. This model demonstrated robust prediction capabilities, as evidenced by metrics such as the coefficient of determination. The sensitivity indices of the main effect for the 2-ply and 3-ply bellows at the sixth convolution were 0.3340 and 0.3233, respectively. The sensitivity index of the sixth convolution was larger than that of other convolutions because the maximum deformation of the bellows expansion joint under monotonic bending load occurs around it. Interestingly, the sensitivity index for the interaction effect was negligible (0.01%) compared to the main effect, suggesting minimal activity between uncertainty factors across convolutions. Notably, bellows expansion joints under repetitive loading exhibit more complex behaviors, with the initial leakage typically occurring at the convolution. Therefore, future studies should focus on the structural uncertainties of bellows expansion joints under cyclic loading and employ a surrogate model for comprehensive global sensitivity analysis.
4,000원