본 연구에서는 TMD 설계 방법에 따른 배관의 지진응답 감소효과를 분석하였다. 구체적으로, 실제 원전 배관에 대한 진동대 시험 결과를 바탕으로 수치 배관 모델을 수립하고 검증하였다. 검증된 배관 모델을 바탕으로 TMD 설치 위치를 결정하고, 여러 가지 방법을 사용하여 TMD 설계값을 도출하였다. 더불어, 본 연구에서는 기존 설계식들을 기하평균한 값을 TMD 설계값으로 활용하였다. 최종적으로, 기존 배관을 기반으로 설계된 TMD가 지진의 무작위성과 지진 및 대상물질의 불확실성 아래에서도 효용성을 검증하였다. 또한, 연구에서 제안한 기하평균 모델을 기반으로 설계된 TMD의 작동성을 확인하였다. 결과적으로, TMD 설계 공식 및 방법에 따른 성능 차이를 비교한 결과, 기하평균 모델의 경우, 기존 설계식들의 특징을 포괄하는 양상이 보였다. 이러한 기하평균 모델은 추후 반복 적인 수치해석을 수행할 때 초기값으로 사용될 수 있을 것으로 보인다. 더불어, 이러한 분석 결과는 향후 원전 배관 계통의 TMD 설계 를 통해 내진 성능을 개선하는 데 유용한 자료로 활용될 것으로 기대된다.
대부분의 원전 설비의 내진 해석에는 해석이 비교적 간편하고, 설계에 보수성을 적절히 반영할 수 있어 대부분 기기가 설치된 위치에서의 층응답스펙트럼 혹은 In-structure response spectrum을 이용한 응답스펙트럼 해석을 주로 이용하고 있다. 설비 공급자 는 설계 시방서에 층응답스펙트럼 선도의 형태로 입력 지진파 자료를 받게 되는데, 필요시 이를 바탕으로 인공 지진파을 만들어 해석 혹은 시험을 수행한다. 설계지반응답스펙트럼의 경우 RG 1.60에 주어지고 SRP 3.7.1의 요건에 따라 인공 지진파 시간 이력을 생성하 나, 층응답스펙트럼의 경우 명확은 기준이 없어 이를 따르고 있다. 층응답스펙트럼은 구조물의 동특성이 반영되기 때문에 지반응답스 펙트럼에 비해 형태가 복잡하여 기존의 P-CARES 등의 인공 지진파 생성 프로그램을 이용할 경우 SRP 3.7.1의 요건에 맞는 시간 이력 인공 지진파를 얻기 위해서는 상당한 노력이 필요하다. 본 연구에서는 수치 최적화를 이용하여 복잡한 형태의 층응답스펙트럼이 라도 SRP 3.7.1의 요건 내에서 그 형태를 따르는 인공 지진파 시간 이력을 효율적으로 생성할 수 있는 절차를 개발하였다.
본 논문은 고온 환경에 노출된 TRM 보강 RC 보의 잔존강도를 예측하기 위한 해석적 연구결과를 제시한다. 연구를 위해 상용 유한요소해석 프로그램인 ABAQUS가 사용되었으며, 콘크리트, 철근, CFRP grid, 모르타르에 대한 재료모델이 제안되었다. 본 연구에서 제안된 유한요소해석 모델의 검증을 위해 선행 연구결과에 대한 재현 해석이 수행되었다. 제안된 유한요소해석 모델의 예측 된 결과는 실험결과와 비교하여 잔존 극한하중과 극한하중 시점에서 각각 약 97.6%, 90.58%의 정확도를 보이는 것으로 나타났다. 또한, 유한요소해석을 통한 균열양상은 실험결과와 비교적 정확하게 예측되었다. 따라서 본 연구에서 제안된 해석모델은 고온 환경에 노출된 TRM 보강 RC 보의 잔존강도를 예측하기 위해 효과적으로 사용될 수 있을 것으로 판단된다.
본 연구는 철계 형상기억합금(Fe-SMA)의 화재 후 성능과 화재 후 구조물의 성능 회복을 위한 프리스트레싱 재료로서의 적용 가능성을 평가하였다. 이를 위해 사전변형률이 2.5%, 5.0%, 7.5%인 Fe-SMA 시편을 최대 가열 온도 400°C, 500°C, 600°C, 700°C 까지 가열한 뒤 냉각 및 인장시험을 수행하였다. 가열 및 냉각 과정에서의 온도–응력 이력 분석 결과, 사전변형률이 높을수록 가열 중 좌굴이 지연되고 냉각 후 더 큰 회복응력이 발현됨을 확인하였다. 특히 7.5% 사전변형률 시편은 500°C 이상에서 500 MPa 이상의 회복응력을 보였으며, 강성 저하 시점의 응력 또한 400°C에서 793 MPa, 700°C에서 735 MPa로 세 조건 중 가장 큰 값을 나타냈다. 2.5%와 5.0% 시편은 600°C 및 700°C에서 5∼10% 더 큰 극한변형률을 나타냈으나, 7.5% 시편은 보강재로서 충분한 극한변형률을 확보함과 동시에 강성 저하 시 더 큰 응력을 유지하여 화재 후 보강재로 사용되기에 가장 적합한 것으로 판단되었다. 본 연구는 500°C 이상의 고온에 노출된 Fe-SMA의 회복응력과 기계적 특성 데이터를 제공함으로써 기존 연구의 공백을 보완하였고, Fe-SMA가 화재 후 구조물 피해 저감과 성능 회복에 기여할 수 있는 보강재로서의 잠재력을 제시하였다.
지하 매설 수도관은 연약지반의 지반침하, 도심지의 부등침하, 싱크홀 등에 의한 허용한계를 초과하는 지반영구변형에 의해 손상이 발생할 수 있다. 지반변형으로부터 수도관을 보호하기 위한 관이음의 사용으로 수도시설의 안전성 확보가 요구된다. 따라서 매립 수도관의 과도 지반변형에 대한 안전성 평가를 위하여 다중적층형 벨로우즈를 신축관 이음으로 적용한 수도 배관시스템을 제작하 였다. 제작된 배관시스템의 굽힘 및 처짐에 대한 변형 성능 확인을 위하여 4점 굽힘 시험을 수행하였다. 4점 굽힘 시험 결과를 바탕으 로 국내 연약지반 모델을 고려하여 KS D ISO 16134에 따라 지반변형에 대한 안전성을 평가하였다. 안전성 평가 결과 다중적층형 벨로우즈 신축관 이음의 지반변형에 대한 성능은 매우 우수한 것으로 평가되었다.
본 연구는 수소 저장 용기의 지진 취약도 분석 시 요구되는 막대한 계산 자원 문제를 해결하고자, 기하학적 대칭성을 활용한 1/4 대칭 유한요소 모델(Quarter Model)을 개발하고 그 타당성을 검증하였다. 표준화된 AC 156 인공지진을 이용한 비선형 시간 이력 해석을 통해 Full Model과 응답을 비교한 결과, Quarter Model의 해석 시간을 Full Model의 20%를 가지고 해석을 완료하였으 며, 이에 따른 신뢰성 확보를 위해 최상단 변위를 통해 이를 검증하였을 때 0.13%의 미미한 오차를 보이며 변위 시간 이력 양상 역시 동일한 거동을 보이며 효율성 확보라는 연구 목표를 달성했다. 또한, 고유진동수, 강재와 콘크리트 주요부의 최대 응력에서 모두 높은 수준의 일치도를 보여 정량적 신뢰도를 입증하였다. 이를 통해 제안된 모델은 해석 정확도를 유지하면서 계산 비용을 획기적으로 절감 하는 효율적인 방법론임을 확인하였다. 다만 이는 균질 등방성 재료인 강재에 한정된 대칭 모델이며, 그 외의 재료 사용 시 추가적인 연구를 통한 모델 구축이 필요할 것으로 판단된다.
최근 수년간 터키, 인도네시아, 멕시코 등 전세계 곳곳에서 대규모의 지진이 발생하였으며 지진피해는 막대한 인적, 물적 피해를 초래하여 심각성을 일깨우고 있다. 대한민국과 인접 국가인 일본은 난카이 대지진과 같은 위협이 다가오고 있으며 대한민국에 서도 2016년, 2017년 경주와 포항에 잇따라 지진이 발생하였다. 이에 따라 현재 대한민국에서 추구하고 있는 안전한 도시환경을 구축 하기 위해서는 지진 재해 대응설계와 연구가 고도화될 필요가 있다. 본 연구에서는 지진 하중의 에너지를 소산함으로써 구조물이 견딜 수 있도록 하는 댐퍼에 대한 연구를 수행하였다. 일반적으로 재료의 항복을 통해 에너지 소산을 유도하는 강재댐퍼의 효율성을 높이기 위해 루프형 댐퍼를 제안하였다. 루프형 댐퍼는 단일 개체로 이뤄진 띄 형태의 강재가 루프형상을 갖으며 이어지는 댐퍼형태를 갖는다. 해당 댐퍼는 혁신적인 구조를 통해 비교적 작은 강재를 사용해도 큰 에너지 소산을 유도할 수 있다. 이를 입증하기 위해 형상적 변수를 설정하여 ABAQUS 프로그램을 사용한 유한요소해석을 수행하였고 힘-변위 그래프, 최대하중, 에너지 소산 등 댐퍼의 성능을 파악할 수 있는 결과를 도출하여 비교분석 하였다. 결과적으로 더 적은 강재를 사용해도 큰 에너지 소산, 최대하중 성능을 도출할 수 있음을 입증하였으며 추후 연구에서 신뢰성을 향상시키기 위한 실험과 실용성을 입증하기 위한 실제 지진하중 적용 프레임 구조물 수치해석을 진행하고자 한다.
하수 및 폐수 환경에서의 콘크리트 구조물은 부식성이 강한 황산 환경에 노출되어 석고와 에트링가이트 형성을 통해 심각한 열화를 초래한다. 본 연구는 이를 해결하기 위해 그래핀 나노플레이트릿(GNP)이 시멘트 모르타르의 내산성 향상에 미치는 효과에 대 해 연구하였다. GNP는 시멘트 중량 기준으로 0.05 wt.%, 0.10 wt.%, 0.15 wt.%로 혼합하였으며, 시편은 28일간의 수중양생 후 0.05 M 황산에 30일 동안 노출시켰다. 내구성 성능은 수분 흡수율, 질량 손실률, 잔류 압축강도 시험을 통해 평가했다. 그 결과, 0.10 wt% GNP는 수분 흡수율을 감소시키고, 질량 손실을 제한하며, 98.9%의 압축강도를 유지함으로써 내산성을 크게 향상시켰다. GNP 함량이 0.15 wt% 이상으로 증가하면 응집이 발생하여 열화가 심화되었다. 이 연구는 GNP를 최적 농도인 0.10 중량%로 첨가하면 황산에 대한 내구성이 향상되고 가혹 환경에서의 장기 인프라 개발 분야에 유망한 잠재력이 있다는 결론을 내렸다.