Seismic fragility curves present the conditional probability of damage to target structures due to external seismic load and are widely used in various ways. When constructing such a seismic fragility curve, it is essential to consider various types and numbers of ground motions. In general, the earthquake occurrence characteristics of an area where the target structure of the seismic fragility curve exists are analyzed, and based on this, appropriate ground motions are selected to derive the seismic fragility curve. If the number of selected ground motions is large, the diversity of ground motions is considered, but a large amount of computational time is required. Conversely, if the number of ground motions is too small, the diversity of ground motions cannot be considered, which may distort the seismic fragility curve. Therefore, this study analyzed the relationship between the number of ground motions considered when deriving the seismic fragility curve and the parameters of the seismic fragility curve. Using two example structures, numerical analysis was performed by selecting a random number of ground motions from a total of two hundred, and a seismic fragility curve was derived based on the results. Analysis of the relationship of the parameter of the seismic fragility curve and the number of selected ground motions was performed. As the number of ground motions considered increases, uncertainty in ground motion selection decreases, and when deriving seismic fragility curves considering the same number of ground motions, uncertainty increases relatively as the degree of freedom of the target structure increases. However, considering a relatively large number of ground motions, uncertainty appeared insignificant regardless of increased degrees of freedom. Finally, it is possible that the increase in the number of ground motions could lower the epistemic uncertainty and thus improve the reliability of the results.
국내 특수교 대부분은 사장교와 현수교로 케이블 교량 형식이다. 특수교는 규모 면에서 가장 유지관 리가 우선시 되는 사회 기반 시설물로 장기적이고 체계적인 유지관리 전략이 필요한 구조물이다. 다시 말해서는 케이블 교량은 대부분 사용 수명이 100년 이상 되는 교량으로 일반적인 중·소규모 교량의 유지관리와는 차별화된 관리가 요구되고 있다. 케이블 교량에서 구조물 상부를 지지하는 케이블은 주 요 부재이므로 구조물의 안전성을 확보하기 위해서는 케이블에 대한 철저한 유지관리가 필요하다. 진 동에 의한 피로 손상은 케이블 사용 수명을 단축하게 하는 주요 원인으로, 풍하중으로 인해 발생한 케 이블 과진동(풍우진동, 웨이크 갤로핑, 지점 가진에 의한 진동 등)은 교량의 안전성에 영향을 미쳐 붕 괴 사고로도 이어질 수 있다. 국내외적으로도 케이블 시스템의 과진동 및 이로 인한 건전성 확보 문제 가 지속해서 대두되고 있는 실정이다. 케이블 진동에 영향을 미치는 풍하중은 정적 풍하중과 동적 풍 하중을 구분할 수 있으며 풍하중 종류를 고려하여 케이블 제진 대책을 마련해야 한다. 한편, 케이블 교량 유지관리 업무에서는 구조해석과 같은 공학적인 판단뿐만 아니라 전문가 경험에 의한 판단도 중 요한 요소로 유사 교량 형식의 사례 조사에 의한 분석도 요구된다. 본 연구에서는 케이블 교량에서의 풍하중에 의한 진동 발생 원인별 사례 및 그에 따른 풍하중에 대한 제진 대책 적용 사례를 조사하였 고, 이를 통해 케이블 교량의 유지관리 업무에 활용될 수 있도록 소개하고자 한다.
우리나라에서 공용중인 시설물은 총 172,111개로 집계되고 있으며, 그 중 교량은 34,199개로 사회 기반시설 중 가장 많은 비중을 차지한다. 이러한 교량은 공용하중, 온도, 습도 등에 의해 거더간 신축 량이 발생하게 되고 신축량 발생으로 인한 유간거리에 대해 차량의 통행 안정성 및 주행성 확보를 위 한 신축이음장치를 설치하게 된다. 신축이음장치를 설치하여 차량의 통행 안정성 및 주행성을 확보할 수 있지만 누수 및 퇴적물 낙하 등을 직접적으로 방지하지 못하여 고무지수재를 별도로 설치하게 된 다. 하지만 이러한 고무지수재는 다양한 원인에 의해 쉽게 손상이 발생한다. 손상된 고무지수재를 통 해 거더의 부식, 교량하부 인명사고 등 다양한 2차 피해가 발생할 수 있다. 피해방지를 위한 교량의 유지관리를 지속적으로 수행하고 있지만 고무지수재 특성상 지속적인 교체가 불가피한 실정이다. 따라 서 본 연구에서는 기존 신축이음장치에 활용되는 고무지수재의 문제점을 해결하기 위하여 초탄성 형 상기억합금을 활용한 새로운 지수재 개발 연구를 수행하였다. 이에 대해 초탄성 형상기억합금 지수재 와 고무지수재에 대한 유한요소해석을 수행하고 비교 및 분석하였으며, 하중 제거 후 원형으로 복원되 는 효과를 통해 지속 사용 가능한 지수재 연구를 검증하였다.
실물 크기로 제작된 L형 프리캐스트 옹벽의 저판부에 대한 휨 실험을 수행하여, 프리캐스트 부분과 현장타설 부분의 연결방법에 따른 구조적 거동을 분석하였다. 연결방법은 기존의 일반적인 철근 겹이 음 방식과 최근 새롭게 개발된 비접촉식 커플러 방식 두 가지를 적용하였다. 실험체 셋팅을 위하여 현 장타설부를 갖는 프리캐스트 L형 옹벽을 제작하여 벽체를 반력벽에 고정하고, 벽체 하단에 힌지 지점 을 설치하였다. 또한 L형 옹벽 저판부의 현장타설부 중간 지점에 하중을 재하하여 고정단 조건으로 인한 전단 및 휨이 연결부에 작용하도록 하였다. 실험결과를 보면 비접촉식 커플러를 적용한 옹벽 저 판부에서 좀더 높은 강성을 보이는 것을 확인하였으며, 최대 강도에는 차이가 없었다. 비접촉식 커플 러는 철근의 부착력에 의해 구조적 성능을 확보하는데 이를 위하여 확대마디, 연결 철근, 스파이럴바 등이 사용된다. 이러한 구성품들로 인하여 비접촉식 커플러 적용 구간에 철근 단면적 향상 효과가 나 타나 높은 강성을 갖게 된 것으로 판단 된다. 비접촉식 커플러는 기존 겹이음에 비해 이음길이를 50% 수준으로 감소할 수 있어 대형 프리캐스트 구조물의 제작에 활용되는데 이번 실험을 통하여 충분한 구조 성능을 가지고 있음을 확인하였다.
본 연구는 철도교 노후화에 따른 열차운행 중 신속 교체 및 재난·재해에 대한 급속 시공을 통하여 공기단축 및 시공성 확보로 국민의 사회적·경제적 피해를 최소화하고자 한다. 철도교 개량 등에서 필 수적인 8철도하로교 시공고도화 및 성능향상9을 위하여 신속 교체와 성능향상이 가능한 강합성 철도하 로교 설계·제작·시공 기술을 개발하고자 한다. 또한, 개발하고자 하는 강합성 하로교의 경우 철도교뿐 만 아니라 도로교에서 적용하고자 하며, 철도교는 상부구조가 단경간 형식으로 이루어지고 있어 철도 교 사용성 검토에 큰 문제가 없으나 도로교의 경우 바닥판 연속화를 고려 중에 있어, 이에 대한 온도 및 부모멘트 등 여러 문제점을 검토하였다. 상로교의 경우 다수의 거더에 의해 바닥판이 지지되므로 PS의 중요성이 부각될 수 없지만, 하로교의 바닥판은 양단 거더에 의한 고정지지이므로 RC구조 적용 이 어려워, 강합성 또는 PSC 공법을 일반적으로 적용한다. 기존 강합성 구조는 비용, 공기 측면에서 지양하고 PSC 구조의 가로보 및 바닥판과 강재 거더를 합성한 하로교를 개발하고자 한다.
교량의 내하력을 확인하기 위해서는 외관상태 점검 및 차량재하시험, 유한요소해석 수행이 필요하 다. 규모가 작은 교량은 시간 혹은 비용적인 문제로 인해, 상기 과업을 수행하여 내하력을 확인하기가 어려운 점이 있다. 본 연구에서는 플랫폼을 통해 교량의 정보를 등록하여 데이터의 분석에 의해 추정 내하성능을 제공하기 위한 연구를 수행하였다. 추정 내하성능 결과는 점검진단 보고서 상의 안전성 평 가 데이터를 수집하여 통계 분석에 의한 결과를 제공한다.
PSC(Prestressed Concrete)거더 교량은 긴장재(강선)를 통하여 교량 양쪽에서 압축력을 추가하는 방 식으로 외부에 대한 저항력을 확보한다. PSC 거더 교량의 긴장 방식에 따라 콘크리트 타설 전(프리텐 션)과 타설 후(포스트텐션)로 구분할 수 있다. 반면에 프리텐션 긴장의 경우 강선이 구조물과 직접 결 합하는 방식이기 때문에 전용관 삽입 및 그라우트 채움 공정이 생략되어 하중이 비교적 가벼울 뿐만 아니라, 긴장재 부식 방지를 위한 유지관리에 매우 효율적이다. 그러나 프리텐션 긴장 방식은 별도의 긴장 시설이 필요하므로 주로 공장에서 제작되고, 건설 현장까지 이동이 필요하기 때문에 길이 (L=18m) 및 무게(W=30tonf)의 제한이 있다. 프리텐션 긴장 공법의 경우 별도의 반력대 및 긴장 시설 이 필요하여 주로 공장에서 제작하고 현장으로 이동 및 설치되고 있다. 도로를 이용한 이동이 필요하 기 때문에 거더의 경간 및 중량의 제한이 발생하게 된다. 따라서, 경간장 25 m 이상의 거더의 경우 포스트텐션을 통한 현장 제작이 주로 이루어 지고 있다. 본 연구에서는 별도의 시설없이 현장에서 프 리텐션 긴장이 가능한 PSC 거더 시공 공법을 제안하였다. 또한, 장경간 PSC 거더 제작을 위한 포스트 텐션 기반의 세그먼트 제작 공법을 제안하고, 그 성능을 검증하였다.
PURPOSES : With the recent enactment of the 「Framework Act on Sustainable Infrastructure Management」 in Korea, the establishment of mid- to long-term management plans for social infrastructure and the feasibility evaluation of maintenance projects have become mandatory. To this end, the life cycle cost analysis is essential. However, owing to the absence of a deterioration model, trials and errors are in progress.
METHODS : In this study, a deterioration model was established for bridges, which are the representative social infrastructures of roads, particularly for expansion joints that can cause enormous damage to not only the superstructure but also the substructure. The deterioration model was classified into rubber and steel, based on the material of the expansion joint. The analysis used the inspection and climate data conducted in Korea over the last 12 years. The Bayesian Markov Hazard model was applied as the analysis technique.
RESULTS : The average life expectancy by type of expansion joint was analyzed to be 8.9 and 6.6 years for rubber and steel, respectively. For probabilistic life cycle cost analysis, the probability distribution of the life expectancy, validity range by confidence level, and Markov transition probability matrix were presented.
CONCLUSIONS : In this study, the basis for deterministic and probabilistic life cycle cost analysis of expansion joints was laid. In future studies, it will be necessary to establish a standardized deterioration model for all types of infrastructure, including all bridge elements.
본 논문은 CFRP 쉬트로 휨 보강된 철근콘크리트 보에서 보강재의 탈락이 구조물에 미치는 영향을 파악하기 위한 실험적 그리고 해석적 연구결과를 보고한다. 실험적 연구로 CFRP 시트의 비부착 수준 및 위치를 실험변수로 고려한 실험체들에 대한 휨파괴 실험이 수행되었다. 중앙부에 비부착구간을 갖는 실험체의 경우 비부착구간의 증가에도 불구하고 최대하중 및 강성의 변화는 크게 감소하지 않았다. 단부에 비부착 구간을 갖는 실험체의 경우 비부착 구간이 증가할수록 최대하중 및 강성이 크게 감소하였다. 이것은 보강재의 작은 보강길이로 인한 정착력의 부족으로 인해 철근의 항복 이후 보강재가 조기 박리되었기 때문으로 판단된다. 본 연구의 결과와 기존 제안된 부착강도 모델을 이용한 예측 결과의 비교를 통해 기존 부착강도 모델들은 단부 비부착 실험체들보다 중앙 비부착 실험체들의 내하력을 더 정확하게 예측하는 것으로 나타났다.
탄소섬유는 인장강도와 내구성이 우수하므로 구조물의 표면에 탄소섬유시트를 부착하는 보강공법은 콘크리트 구조물의 보수 및 보강에 사용되는 대표적인 방법이다. 그러나 탄소섬유시트 부착공법은 시공 후 보강성능의 확인이 어려운 단점이 있다. 탄소섬유시트에 광섬유를 매입하여 계측이 가능한 보강재로 사용하는 경우 미부착이나 탈락된 부위를 찾아내어 구조물의 보강수준을 평가할 수 있을 것으로 기대된다. 본 연구는 제작된 센싱보강재의 기본적인 가능성을 확인하기 위해 센싱보강재의 크기와 매립된 광섬유의 간격을 변인으로 두고 센싱보강재 실험체를 제작하였다. BOTDR (Brillouin Optical Time Domain Reflectometer)을 사용하여 시편의 변형에 따른 광섬유의 산란광으로부터 변형률을 계측하고 응답을 분석하였다. 분석 결과로부터 보강수준 정량화를 위한 센싱보강재의 적용성 및 BOTDR의 최소요구성능을 확인하였다.
This paper presents experimental results for evaluating bond strength of FRP Hybrid Bars(HYB). In order to confirm the bond strength of HYB, direct bond strength tests were performed on 20 specimens. 20 specimens made of deformed steel bars were also tested for relative comparison. HYB and deformed steel bars were embedded in a concrete block with a size of 200 mm and different attachment lengths were applied depending on the diameter of the reinforcing bars. During the test, load and relative displacement(slip) were measured and the load-displacement behaviors of all specimens were analyzed from the measured results. The maximum bond strength of deformed steel bars were higher than that of HYB regardless of its diameter. However, after the maximum load, the deformed steel bars were more dominant than the HYB in the sudden load reduction tendency.
The purpose of this study was to develop a carbon fiber sheet with embedded fiber optic sensor for maintenance and performance improvement of aged concrete bridges. The carbon fiber sheet reinforcement method can separate the concrete and the carbon fiber sheet, so it is necessary to investigate the bond performance level. However, separation of concrete and carbon fiber sheet and investigation of concrete scaling phenomenon are carried out by human, so it is difficult to secure objectivity and accurate investigation. Therefore, in this study, a method to confirm the bond level of carbon fiber sheet by reinforcing with a carbon fiber sheet with a fiber optic sensor was examined. In this study, we investigated the strain of fiber optic sensor embedded in carbon fiber sheet to identify the separate point of carbon fiber sheet. The strain measured by fiber optic sensor was measured by numerical analysis. The strain rate of the carbon fiber sheet was compared with that of the carbon fiber sheet. As a result, it was confirmed that the strain was changed at the point where the carbon fiber sheet was separated, and the strain occurred in the carbon fiber sheet was examined to predict the separate point.
The purpose of this study is to develop a carbon fiber sheet with embedded fiber optic sensor for maintenance and performance improvement of aged concrete bridges. The carbon fiber sheet bonded method has many advantages in terms of member repair and reinforcement, but it is disadvantageous in that it is necessary to directly identify the separate point generated during the bonded of the carbon fiber sheets by an artificial method. In this study, we examined the method of confirming the separate point of the carbon fiber sheets by examining the strain of the fiber optic sensor embedded in the carbon fiber sheets. The strain rate measured by the fiber optic sensor was replaced by the strain of the carbon fiber sheets derived from the FEM analysis.
In this study, tensile stresses of partially delaminated CFRP sheets were analytically evaluated. The analytical model is a 15-m long concrete beam with a rectangular cross-section of 2×3 m and uses 480 2D-plate elements and 5760 3D-solid elements for mesh construction. The elastic modulus of concrete and CFRP sheet used in the analysis are 27,536 MPa and 200,000 MPa, respectively, and the compressive strength of concrete and tensile strength of CFRP sheet are 30.0 MPa and 4,000 MPa, respectively. In order to evaluate the change of the tensile stress due to the delamination of the CFRP sheet, the whole attached model and the partially delaminated model according to the position of delamination were considered. As a result of the finite element analysis, the tensile stress of the entire attached CFRP sheet showed a constant tensile stress on the whole cross section, and the tensile stress of the partially delaminated CFRP sheet showed the maximum tensile stress on the position of delamination. Based on the results of this study, future research will be carried out to optimize the layout and shape of CFRP sheets embedded with optical fiber sensors.
In this study, the long-term performance of FRP Hybrid Bar made by hybridizing FRP (Fiber Reinforced Polymer) with ordinary reinforcing steel bars was experimentally examined as a part of the development of alternative materials for RC (reinforced concrete) structures especially located in marine or harbor areas. In order to evaluate the field exposure of the FRP Hybrid Bar, the specimen was prepared and the corrosion behavior was evaluated by letting the specimen exposed to the field conditions in the west coast of South Korea. The purpose of this study is to provide important data as a material countermeasure to reduce corrosion of reinforcing steel in future marine port concrete structures based on the results obtained through this study.
This paper presents experimental and analytical results for predicting tensile behavior of FRP Hybrid Bar(HYB). In order to confirm the tensile behavior of HYB wrapped with glass fiber reinforced polymer(GFRP) on deformed rebar, direct tensile tests were performed on 8 specimens. The diameter of the HYB was considered as a test variable and the tensile load, displacement, and tensile strain of each specimen were measured by tensile test. In order to predict the tensile behavior of HYB, numerical analysis based on tensile model of each material was performed. The tensile models of reinforcing bar, glass fiber, and resin, which are the constituent materials of HYB, are assumed to be simple shapes according to their material properties. The results of the numerical analysis through the strain compliance condition of each material were compared with the experimental results and both results showed consistent trends. The experimental and analytical ratios for yield and ultimate loads were 1.02 and 1.00, respectively, and the coefficient of variation were 3.61 and 2.54, respectively. However, a maximum of about 9 mm error occurred due to the slip generated by the direct tensile test in the comparison between the experimental results and the analytical results for the tensile displacement.