논문 상세보기

인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정 KCI 등재

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/404441
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

본 논문에서는 전산구조 해석 데이터를 기반으로 인공 신경망을 활용하여 헬리데크 구조물에 대한 손상 추정 기법을 제안하였다. 헬리데크를 구성하는 트러스와 서포트 부재들에 대해서 절점을 공유하는 부재들을 70개의 모델로 그룹화 하였으며, 최대 3가지 부재 그룹에 무작위로 손상을 부여하여 총 37,400개의 손상 시나리오를 생성하였다. 이들 각각에 대해서 구조 해석 프로그램을 통해 모드 해석을 수행하였으며, 전체 손상 시나리오를 사용 목적에 따라 학습, 유효성 검사, 그리고 검증 시나리오로 분리하였다. 헬리데크의 손상 및 비손상 상태의 동적 응답 특성에 대한 패턴 인식을 위해 PyTorch 프로그램을 활용하여 3개의 은닉층을 가지는 인공 신경망을 구성하였으며, 이에 대해서 다양한 손상 시나리오를 반복 학습함으로써 손실 함수를 최소로 하는 인공 신경망을 도출하였다. 최종적으로 총 400개의 검증 시나리오에 대해서 인공 신경망이 추정한 손상률과 실제 부여된 손상률을 비교하였으며, 그 결과 본 연구를 통해 얻어진 인공 신경망이 손상 부재의 위치와 손상 정도를 매우 높은 정확도로 예측하는 것을 확인하였다.

In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

목차
Abstract
1. 서 론
2. 모델 및 학습 데이터 생성
    2.1 헬리데크 모델
    2.2 헬리데크 손상 정의 및 데이터 생성
    2.3 손상 시나리오 구성
3. 인공 신경망 학습
    3.1 손상 파트 별 독립 학습
    3.2 인공 신경망 구성
    3.3 인공 신경망 학습
4. 결 과
    4.1 손상 시나리오 검증
    4.2 회귀 그래프 및 결정 계수
    4.3 결론
References
요 지
저자
  • 김찬영(한국해양대학교 해양공학과) | Chanyeong Kim (Department of Ocean Engineering, Korea Maritime and Ocean Univ.)
  • 하승현(한국해양대학교 해양공학과) | Seung-Hyun Ha (Department of Ocean Engineering, Korea Maritime and Ocean Univ.) Corresponding author