The ballasted flocculation effects of the mill scale and magnetite on activated sludge were investigated. Both ballasted flocculants (BF) could remarkably improve the sludge settleability in terms of zone settling velocity (ZSV) and sludge volume index (SVI). With the BF dosage of 0.2 to 2.0 g-BF/g-SS, the magnetite particles showed better efficiency on improving settling behavior of activated sludge than the mill scale due to higher surface area and hydrophobic property. The efficiency of SVI30 with magnetite injection was 2.5 to 11.3% higher than mill scale injection and that of the ZSV appreciated from 23.7% to 44.4% for magnetite injection. Averaged floc size of the BF sludge with magnetite dosage (0.5 g-BF/g-SS) was 2.3 times higher than that of the control sludge. Dewaterability of the sludge was also greatly improved by addition of the BF. The specific resistance to filtration (SRF) was reduced exponentially with increasing the dosage of BF. However, the BF’s particle size effect on the SRF looks to be marginal. Consequently, for improving the dewaterability, the BF played a physical role to remove the pore water of the biological flocs by intrusive attachment and a chemical role to induce aggregation of the flocs by charge neutralization.