검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 하이드라진 기조의 환원성 제염제를 이용한 마그네타이트 산화물의 용해를 다루고 있다. 마그네타이트로부터의 Fe(Ⅱ) 및 Fe(Ⅲ)의 용해는 protonation, surface complexation 및 reduction에 의해 지배를 받는다. 하이드라진과 황산은 산소결합을 파괴하거나 Fe(Ⅲ)이온을 Fe(Ⅱ)이온으로 환원시키기 위한 수소 및 전자를 각각 제공하게 된다. 속도론적 관점에서 보다 효율적인 용해를 위하여 다수의 전이금속의 영향을 분석하여 Cu(Ⅱ) 이온이 효과적임을 확인한 바 있다. Cu(Ⅰ) 이온은 Cu(Ⅱ) 이온으로 산화되는 동안 전자를 방출하여 Fe(Ⅲ) 이온을 환원시키고 다시 하이드라진에 의해 Cu(Ⅰ) 이온으로 환원되게 된다. 본 연구를 통해 제염용액에 매우 적은 양의 구리 이온 (약 0.5 mM)을 첨가함에 따라 평균 40% 용해속도가 향상됨을 확인하였고, 특히 특정 조건에서는 70% 이상 용해속도가 향상 됨을 확인하였다. 구리 이온이 하이드라 진과 배위결합을 이루는 지에 대해서는 아직 명확하지 않으나, 분명한 것은 Cu(Ⅱ)/H+/ N2H4으로 이루어진 제염제는 효과적인 용해성능을 가지고 있다는 것이다.
        4,000원
        2.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite (Fe3O4), and hematite (Fe2O3). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.
        4,000원
        3.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) NH4OH. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and NH4OH. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in NH4OH. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the NH4OH-based magnetite.
        4,000원
        7.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of 45˚C is possible.
        4,000원
        8.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자성유체 유체씰에 사용할 수 있는 마그네타이트를 공침법에 의하여 합성하였다. 마그네타이트의 평균입자크기는 동적광산란 측정장치(DLS)에 의해 약 10-12 nm 로 측정되었다. XRD 측정결과, NH4OH 의 농도가 증가함에 따라 마그네타이트의 결정화도가 증가하였다. 수중 분산된 자성유체의 제타전위는 -49.3 mV 에서 -26.2 mV 까지 DLS에 의하여 측정되었다. 입자의 형상은 구형이었고, 수상과 유상 자성유체에서 스파이킹 효과를 확인하였다.
        4,000원
        10.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric () and ferrous () chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of -FeOOH and the attaining a proper driving force for the reaction of -FeOOH and ion to give are important process variables for the synthesis of uniform magnetite nanoparticles.
        4,000원
        11.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of FeO-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which O and TiO are dispersed in -Fe matrix with nano-sized grains are obtained by mechanical alloying of FeO with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in FeO-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAlO or FeTiO. The average grain size of -Fe in Fe-TiO composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.
        4,000원
        13.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        The high speed elimination process of suspended solid was investigated to treat the pulp waste water by using surface modified magnetite particle and magnetic power. The effects of the various aluminum salts such as Al(NO3)3·9H2O, AlCl3·6H2O, Al2(SO4)3·13~14 on the COD, BOD and suspended solid were systematically studied. It has been found that the 2.0 wt% of Al was most effective for the modification of Fe3O4 powder and then best for the treatment of pulp waste water. Optimum quantity of modified magnetite in this study was 12 wt%, and aging time was found to be 12 hours. Comparing with the conventional process, the required time for SS removal was drastically decreased. BOB and COD were also effectively removed when applied to the pulp wastewater.