기계 장비의 진동 데이터는 필연적으로 노이즈를 포함하고 있다. 이러한 노이즈는 기계 장비의 유지보수를 진행하는데 악영향 을 끼친다. 그에 따라 데이터의 노이즈를 얼마나 효과적으로 제거해주냐에 따라 학습 모델의 성능을 좌우한다. 본 논문에서는 시계열 데 이터를 전처리 함에 있어 특성추출 과정을 포함하지 않는 Denoising Auto Encoder 기법을 활용하여 데이터의 노이즈를 제거했다. 또한 기계 신호 처리에 널리 사용되는 Wavelet Transform과 성능 비교를 진행했다. 성능비교는 고장 탐지율을 계산하여 진행했으며 보다 정확한 비교 를 위해 분류 성능 평가기준 중 하나인 F-1 Score를 계산하여 성능 비교를 진행했다. 고장을 탐지하는 과정에서는 One-Class SVM 기법을 활용하여 고장 데이터를 탐지했다. 성능 비교 결과 고장 진단율과 오차율 측면에서 Denoising Auto Encoder 기법이 Wavelet Transform 기법 에 비해 보다 좋은 성능을 나타냈다.
Vibration data of mechanical equipment inevitably have noise. This noise adversely affects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.