검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기계 장비의 진동 데이터는 필연적으로 노이즈를 포함하고 있다. 이러한 노이즈는 기계 장비의 유지보수를 진행하는데 악영향 을 끼친다. 그에 따라 데이터의 노이즈를 얼마나 효과적으로 제거해주냐에 따라 학습 모델의 성능을 좌우한다. 본 논문에서는 시계열 데 이터를 전처리 함에 있어 특성추출 과정을 포함하지 않는 Denoising Auto Encoder 기법을 활용하여 데이터의 노이즈를 제거했다. 또한 기계 신호 처리에 널리 사용되는 Wavelet Transform과 성능 비교를 진행했다. 성능비교는 고장 탐지율을 계산하여 진행했으며 보다 정확한 비교 를 위해 분류 성능 평가기준 중 하나인 F-1 Score를 계산하여 성능 비교를 진행했다. 고장을 탐지하는 과정에서는 One-Class SVM 기법을 활용하여 고장 데이터를 탐지했다. 성능 비교 결과 고장 진단율과 오차율 측면에서 Denoising Auto Encoder 기법이 Wavelet Transform 기법 에 비해 보다 좋은 성능을 나타냈다.
        4,000원