The emergence of green methods for the synthesis of graphene-based composites became the gateway for the solution of pollution and economic synthetic methods. Herein, we reported a single step in situ synthesis of reduced graphene oxide sheets decorated with silver nanoparticles (CRG–Ag nanocomposite) using custard apple leaf extract as an effective reducing and stabilizing agent. The ultraviolet–visible, Fourier transform infrared and Raman techniques revealed a primary confirmation about the formation of the said nanocomposite. The X-ray diffraction studies confirmed the face-centred cubic crystal structure of silver nanoparticles (Ag NPs) of 30 nm in size. The high-resolution scanning electron microscope spectra revealed the uniform distribution of Ag NPs on the graphene sheets. This simple, novel and rapid approach enabled a facile production of homogeneously deposited Ag NPs on graphene sheets. Thus synthesized CRG–Ag nanocomposite showed excellent photocatalytic efficiency of 96% in 2 h under sunlight using methylene blue as a model pollutant.