This study aimed to remove uranium (U(VI)) ions from sulfate-based acidic soil-washing effluent using the ion-exchange method. For effective ion exchange of U(VI) ions under acidic conditions, one chelate resin (Purolite S950) stable under low pH conditions and two anion-exchange resins (Ambersep 400 SO4 and 920U SO4) used in sulfuric acid leaching systems were selected. The exchange performance of the three selected ion-exchange resins for U(VI) ions was evaluated under various experimental conditions, including ion-exchange resin dosages, pH conditions, reaction times, and reaction temperatures. U(VI) ion exchange was consistent with the Langmuir model and followed pseudo-second-order kinetics. Thermodynamic experiments revealed that the U(VI) ion exchange by the ion-exchange resins is an endothermic and spontaneous process. On the other hand, U(VI) ions was effectively desorbed from the ion-exchange resins using 0.5 M H2SO4 or Na2CO3 solution. Overall, on the basis of the results of the present study, we propose that Purolite S950, Ambersep 400 SO4, and Ambersep 920U SO4 are ion-exchange resins that can be practically applied to effectively remove U(VI) ions from sulfate-based acidic soil-washing effluents.