검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.05 구독 인증기관·개인회원 무료
        The rise of nuclear power plants to meet escalating global energy needs has made environmental pollution including the contamination of uranium due to improper disposal of radioactive wastewater during uranium milling and mining processes. Adsorption, a water purification method known for its fast kinetics, high selectivity, and ease of use, has emerged as a popular choice for the treatment of radioactive wastewater. In response to the critical need for the purification of radioactive wastewater contaminated with U(VI), this review provides a comprehensive summary of the various types of materials, synthetic methods, and adsorption mechanisms used for the purification process. The materials are categorized into four main groups: organic, inorganic, composite/nanomaterials, and framework materials. To enhance the adsorption capacity for U(VI), researchers have explored physical and chemical modifications as well as the development of organic-inorganic hybrids. The improved adsorption performance resulting from these modifications is mostly attributed to electrostatic interaction, surface complexation, and ion exchange mechanisms. However, despite the present understanding of the processes involved, further research is still needed to fully determine the optimal approach for purifying contaminated radioactive wastewater.
        2.
        2023.05 구독 인증기관·개인회원 무료
        90Sr is considered a hazardous radionuclide due to its long half-life of 28.8 years, radiotoxicity, and potential to bioaccumulate in various organisms. In the environment, strontium typically exists as divalent cation Sr2+ or in different complexes, depending on the environmental physical and chemical factors. Despite its mobility, Sr2+ transport remains affected by adsorption from solid phases, such as soil and sediments. This research aimed to investigate the efficiency of a magnetic flocculant (MNP/IF) in separating suspended soil and Sr2+ from a soil suspension. MNP/IF was prepared via the electrostatic interaction between magnetite particles and an inorganic flocculant (IF) composed of CaCO3 and Na2SO4. Analysis of the physical properties of MNP/IF confirmed that MNP/IF was successfully imparted with magnetism and had excellent adsorption capacity for Sr2+. The optimal MNP/IF dosage for the sedimentation of suspended soil was determined to be 0.3 g/g (mass ratio of flocculant to soil). The lower the pH, the more favorable the flocculation-sedimentation process of the suspended soil by MNP/IF, since Ca2+ and Mg2+, which are the most common strong flocculators, were further eluted from IF under acidic conditions. Besides, MNP/IF exhibited outstanding removal performance for Sr2+, with maximum adsorption capacities of 163.6 mg/g observed during the flocculation-sedimentation reaction of suspended soil. The adsorption of Sr2+ exhibited consistency with the Langmuir model and followed pseudo-second-order kinetics. These findings suggest that MNP/IF can be used for the simultaneous removal of suspended soil particles and Sr2+ from a radioactive soil suspension.
        3.
        2022.10 구독 인증기관·개인회원 무료
        This study aimed to remove uranium (U(VI)) ions from sulfate-based acidic soil-washing effluent using the ion-exchange method. For effective ion exchange of U(VI) ions under acidic conditions, one chelate resin (Purolite S950) stable under low pH conditions and two anion-exchange resins (Ambersep 400 SO4 and 920U SO4) used in sulfuric acid leaching systems were selected. The exchange performance of the three selected ion-exchange resins for U(VI) ions was evaluated under various experimental conditions, including ion-exchange resin dosages, pH conditions, reaction times, and reaction temperatures. U(VI) ion exchange was consistent with the Langmuir model and followed pseudo-second-order kinetics. Thermodynamic experiments revealed that the U(VI) ion exchange by the ion-exchange resins is an endothermic and spontaneous process. On the other hand, U(VI) ions was effectively desorbed from the ion-exchange resins using 0.5 M H2SO4 or Na2CO3 solution. Overall, on the basis of the results of the present study, we propose that Purolite S950, Ambersep 400 SO4, and Ambersep 920U SO4 are ion-exchange resins that can be practically applied to effectively remove U(VI) ions from sulfate-based acidic soil-washing effluents.
        4.
        2022.05 구독 인증기관·개인회원 무료
        The purpose of this study was to effectively purify U-contaminated soil-washing effluent using a precipitation/distillation process, reuse the purified water, and self-dispose of the generated solid. The U ions in the effluent were easily removed as sediments by neutralization, and the metal sediments and suspended soils were flocculated–precipitated by polyacrylamide (PAM). The precipitate generated through the flocculation–precipitation process was completely separated into solid–liquid phases by membrane filtration (pore size < 45 μm), and Ca2+ and Mg2+ ions remaining in the effluent were removed by distillation. Even if neutralized or distilled effluent was reused for soil washing, soil decontamination performance was maintained. PAM, an organic component of the filter cake, was successfully removed by thermal decomposition without loss of metal deposits including U. The uranium concentration of the residual solids after distillation is confirmed to be less than 1 Bq·g−1, so it is expected that the self-disposal of the residual solids is possible. Therefore, the treatment method of U-contaminated soil-washing effluent using the precipitation/distillation process presented in this study can be used to effectively treat the washing waste of U-contaminated soil and self-dispose of the generated solids.
        6.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        파이로프로세싱 전해환원 공정에서 현재 사용 중인 Pt 양극을 대체하기 위한 소재 개발은 매우 중요하다. 이 연구에서는 전 기화학 반응시 산소를 발생시키는 전도성 세라믹 양극으로서 TiN의 전기화학적 거동을 알아보았다. UO2의 전해환원이 일어 나는 동안 TiN 양극의 적합성과 안정성에 대한 평가를 진행하였다. LiCl-Li2O 용융염에서 TiN 양극을 이용하여 UO2를 전기 화학적으로 금속 U로 변환시킬 수 있었다. 반응 도중 TiN의 산화 반응은 관찰되지 않았다. 하지만 TiN 내부에서 공공이 생 기는 것을 확인하였으며, 이에 따라 소재 수명에 제한이 있을 것으로 판단된다.
        4,000원
        7.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Li2O-LiCl 용융염을 이용한 전해환원기술은 사용후핵연료로부터 우라늄 금속을 회수하기 위해 연구되고 있다. 이 전해환원기술에서는 Li2O가 촉매로 이용되기 때문에 그 농도를 유지하는 것은 매우 중요한 운전인자이다. ZrO2는 피복관의 주성분이 Zr이기 때문에 사용후핵연료에 불가피하게 함유되며, 본 연구에서는 Li2O를 촉매로 이용하는 전해환원공정에서 ZrO2의 거동을 살펴보았다. Li2O와 ZrO2의 화학반응과 전해환원공정 중에서의 생성물을 분석한 결과, Li2ZrO3와 Li4ZrO4가 주요하게 관찰되었고, 이는 Li2O의 손실을 가져오는 원인이 된다. 즉, ZrO2는 Li2O를 소모하는 역할을 하며, 반응생성물은 전기화학적으로 안정하기 때문에 Li2O의 손실이 불가피하게 된다.
        4,000원