Corrosion of copper (Cu) canisters is one of the important factors to ensure the safety of a deep geological repository site. This is because the corrosion of a canister may induce failure of the canister which can lead to a release of radionuclides into the environment. Corrosion of canisters for highlevel wastes is affected by the following multiphysics: thermal-hydraulics, transportation of chemical species, chemical reactions, and interface reactions. This research aimed to develop a multiphysics numerical model for the corrosion of spent nuclear fuel canisters for a deep geological repository in South Korea. The multiphysics model is based on MOOSE (Multiphysics Object-Oriented Simulation Environment) which uses a finite element method. In the multiphysics model, the following multiphysics are coupled and solved together for a deep geological repository design of South Korea: interface redox reactions, porous flow, and heat transport in porous flow. The proposed model was validated with experimental data before being applied to a KAERI reference disposal unit. It was found that the corrosion potential of a Cu canister shows an uneven distribution of corrosion potential along with the surface. In addition, top, bottom, and side surfaces of the canisters show a different lifetime and corrosion potential. Important redox reactions for corrosion are changed along with time from a reduction of O2 and anodic dissolution of Cu by Cl− to sulfidation of Cu and reduction of water. The proposed model will be coupled with some important chemical reactions in engineering buffers and will be the base for the understanding of the behavior of Cu canisters in the KAERI reference disposal unit.