논문 상세보기

Infrared and Raman Spectra of Domestic KJ-II and MX-80 Bentonites

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430439
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

FTIR (Fourier Transform Infrared) and Raman spectra of KJ-II bentonite provided by Clariant Korea were compared with those of MX-80 bentonite. The FTIR spectra were obtained using a Nicolet 5 FTIR spectrometer (Fisher Scientific) equipped with a diamond ATR (Attenuated Total Reflection) module. The spectra were collected for 64 scans with a resolution of 4 cm−1. Raman spectra were obtained using an optical microscope (Olympus, BX43) and a spectrometer (Andor, SR- 500). The laser beam was focused using an objective lens with a magnifying power of 50. The backscattered light from the sample was collected into an optical fiber with a core diameter of 0.4 mm. The Raman signals were recorded with CCDs (Andor, DV401A-BV for 532 nm laser wavelength and DV420A-OE for 638 and 785 nm laser wavelengths). Each pixel of CCD received the signal for 1 s and its 1000 times accumulated data were collected. The FTIR spectra of the two bentonite samples are very similar. The FTIR spectra of both bentonites showed absorption bands at 3623, 3399, 3231 cm−1 in the higher wavenumber region and at 1637, 1443, 1117, 997, 914, 887, 847, 797, 611, 515, 414 cm−1 in the lower wavenumber region. A sharp band at 3623 cm−1 and the strong band at 997 cm−1 correspond to the OH stretching of structural hydroxyl groups and the Si-O stretching vibration, respectively. In addition to these clear bands, several absorption bands observed in this experiment are well matched with the results reported in various literatures. Unlike the FTIR spectrum, it is not easy to observe the Raman bands of bentonite. The reason is that strong fluorescence interferes with the Raman spectrum. The two bentonite samples showed different fluorescence intensities. In the case of MX-80 bentonite, no clear Raman band was observed due to the influence of very strong fluorescence. KJ-II bentonite showed a relatively weak fluorescence intensity and Raman bands were partially visible at around 147, 260, 397, 709, and 1279 cm−1. In particular, the band at 1279 cm−1 is wide and sturdy. It was observed that the non-powder samples showed a better quality spectra. The Raman characteristics of KJ-II bentonite, which depend on the incident laser wavelength and the sample pretreatment, are discussed in detail.

저자
  • Euo Chang Jung(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon) Corresponding author
  • Seonggyu Choi(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Hee-Kyung Kim(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Min Hoon Baik(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Jae-Kwang Lee(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Jang-Soon Kwon(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)