This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.
A semi-natural composite of κ-carrageenan and bentonite, two natural biopolymers, was synthesized through free radical polymerization. This synthesis aimed to obtain a biodegradable, biocompatible, and swellable composite that is environmentally friendly. The components used in this synthesis are readily available, making it economically feasible and promising for potential biomedical applications. The composite is pH-responsive and intended for oral delivery of metformin hydrochloride and aminophylline, which have low bioavailability and undesirable side effects, respectively. The organic composite exhibits the advantage of reducing drug release in the acidic gastric medium. This composite is a stimuli-responsive polymeric material that has garnered significant attention in recent years for its application in oral drug delivery systems. These materials enable site-specific and controlled drug release while minimizing toxicity. The carrageenan-g-poly(acrylamide-co-acrylic acid)/bentonite composite was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM), which confirmed the successful synthesis of the composite. The swelling behaviour and point of zero charge of the composite were studied at different pH values, which showed a strong influence on the swelling properties of the composite. The drug loading capacity of the composite was measured at pH 5.3, and it was 70.60 mg/g for metformin and 95.66 mg/g for aminophylline at pH(3). The in vitro release profile of both drugs from the composite was also affected by the ionic strength, and it exhibited a lower release rate with higher salt concentration. The maximum release percentage of the drugs from carrageenan-g-poly(acrylic acid-acrylamide)/bentonite in simulated gastric, intestinal, and colon fluids was achieved within 40 h. The maximum release was 80% for metformin in simulated intestinal fluid (SIF) and 75% for aminophylline after 40 h.
The glucomannan content of Aloe vera gel was measured by a novel method using a bentonite suspension that floc-culates upon mixing with gels prepared by hand filleting of aloe leaf. An optimum flocculation condition was deter-mined to be Aloe vera gel diluted in the range of 2 to 5-fold and then a bentonite suspension 1% (w/v) mixed withthe gel sample in the ratio of 8:2 (v/v) to provide a mixture volume of 10mL with the length to diameter ratio of5. Under the conditions of these experiments, a rapid settling (<3 min) of more than 90% of the bentonite wasachieved only when the aloe gel sample was properly diluted. The glucomannan concentrations in various dilutedsamples with the highest settling rates were identified in the range of 195.7±21.4mg/L; thus, the results indicate thatthe glucomannan content may be determined from the dilution rate of the aloe gel sample that exhibits the highestsettling rate. This study provides a simple, rapid, and cost-effective assay for the estimation of the glucomannanlevel in raw Aloe vera gel.
A study was conducted to determine the dietary effects of Na-bentonite (NaB) and probiotics on meat characteristics and health of Hanwoo steers fed rice straw as a sole roughage source. A total of 24 growing Hanwoo steers (avg BW 232 kg) were assigned to two treatments which included a control diet (concentrate mix and rice straw) and a treatment diet (control diet + 0.5-1.0% NaB + 0.5-1.0% probiotics. The diets were fed for 22 months up to the time the animals were slaughtered. Dietary treatment increased (p<0.05) concentrations of trace minerals such as Zn, Cu, and Fe in the longissimus muscle compared to the control. The treatment diet did not affect cold carcass weight, yield traits such as backfat thickness, longissimus muscle area, yield index, yield grade and quality traits such as marbling score, meat color, fat color, texture, maturity and quality grade. Blood profiles of growing steers were within the normal ranges for healthy cattle. In conclusion, feeding a combination of clay mineral and probiotics to Hanwoo steers fed rice straw as a sole roughage source could have a desirable effect on improving trace mineral retention in longissimus muscle without any deleterious effects on carcass traits of steers.
In this study, we used activated carbon (AC) and titanium oxysulfate as a titanium precursor to prepare carbon/titania composites. We then mixed it with bentonite in different ratios to make a carbon/titania/bentonite monolith for use in architecture bricks by using Phenolic rosin (PR) as a bonding agent. The physicochemical properties of the prepared composites were analyzed by BET surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), self-cleaning effect and bactericidal tests. The BET surface areas increased as the ratio of carbon/titania composites increased. The SEM microscopy showed that the TiO2 and bentonite were coated on the surface of the AC. The XRD patterns showed a mixture structure of anatase and rutile of TiO2 with a clear SiO2 structure. The EDX spectra of the carbon/titania/bentonite monolith confirmed the presence of various elements, namely C, O, Ti and Si, as well as other, impure elements. Moreover, to determine the self-cleaning effect of the carbon/titania/bentonite monolith, we used methylene blue (MB, C16H18N3S·Cl·3H2O) in an aqueous solution under the irradiation of visible light. Accordingly, all of the samples had excellent degradation of the MB solution. Furthermore, it was observed that the composites with sunlight irradiation had a greater effect on E. coli than any other experimental conditions.
벤토나이트 현탁액에 의한 폴리에틸렌 정밀여과 모세관 막의 오염특성에 대하여 검토하였다. 막오염의 윈인은 막표면 위에서 생성되는 케익층의 성장과 입자들이 세공을 막는 표준 및 완전세공막힘 때문이었으며, 막오염은 이들 세 가지 오염형태가 동시에 발생하지만 케익여과오염에 의해 크게 지배를 받는다. 운전압력 1.0kg/cm2에서 총 막오염에 대한 성분오염의 비율은 표준세공막힘 3.36%, 완전세공막힘 3.18% 그리고 케익여과오염 93.46%이었다. 현탁액의 농도가 1000 ppm인 경우에는 완전세공막힘 1.71%, 표준세공막힘 1.90% 그리고 케익여과오염이 96.39%이었으며, 운전초기에 총 오염의 96.14%가 발생했다. 총 오염에 대한 케익여과의 영향은 세공이 0.34 μm막에서 컸다. 순환흐름속도의 증가로 인해 성분오염은 약 10.20% 감소하였고, 총 오염에 대한 세공막힘의 비율은 높았다.
폴리에틸렌 정밀여과 모세관막을 이용한 벤토나이트 콜로이드 현탁액의 투과유속 감소특성을 검토하였다. 운전시간이 경과하면서 투과유속이 감소되는 원인은 막표면 위에서 케익층의 성장과 입자들에 의한 세공막힘 때문이었으며, 운전시간이 경과하여 정상상태에 도달하면 투과유속은 케익여과 모델에 의해 지배받는다. 운전압력이 높은 경우의 투과유속 감소는 세공막힘과 케익층이 치밀해졌기 때문이다. 운전압력이 증가함에 따라 J/J₁는 감소하였으며, 0.5 kg/sub f//㎠일 때의 45%, 2.0 kg/sub f//㎠일 때 38%로 감소하였다. 운전압력 0.5 kg/sub f//㎠에서 총 막오염에 대한 성분오염의 비율은 표준세공막힘 14.6%, 완전세공막힘 23.4% 그리고 케익여과 62.0% 이었다. 순환흐름속도의 증가로 인해 투과유속은 증가하였고, 그 효과는 운전압력이 1.0 kg/sub f//㎠일 때가 운전압력 2.0 kg/sub f//㎠ 경우보다 컸다. 세공크기가 0.34 ㎛인 막의 투과유속은 세공의 크기가 0.24 ㎛인 막보다 컸으며, 용액의 농도에 따른 투과유속은 농도가 낮은 용액이 컸다. 세공크기가 0.34 ㎛인 막의 막오염 형태는 유사하지만 농도가 200 ppm인 용액의 경우 1000 ppm인 용액에 비하여 상대적으로 미약한 세공막힘 현상을 보였다.
본 논문에서는 가압경수로(PWR) 고준위폐기물을 깊은 지하 500m에 처분 시 사용되는 처분용기 및 이를 보호하기 위하여 50㎝ 두께로 처분용기 주위를 감싸고 있는 벤토나이트 버퍼의 복합구조물에 지진 등의 지각 변동에 의하여 갑작스럽게 10㎝의 수평한 암반 전단력이 대칭적으로 가해졌을 때, 처분용기의 안전성(붕괴)을 예측하기 위하여 처분용기+벤토나이트 버퍼복합 구조물에 대한 비선형 구조해석을 수행하였다. 복합구조물을 구성하고 있는 물질들은 탄소성체로 가정하였으며, 대변형 발생 시 항복을 예측하는 항복조건식으로는 처분용기를 구성하고 있는 금속물질(구리, 주철)에 대하여 von-Mises 항복조건식을, 벤토나이트 버퍼물질에 대하여는 Drocker-Prager 항복조건식을 적용하였다. 해석 결과들을 분석하면 비록 10㎝의 수평한 대칭 암반 전단력에 대하여 벤토나이트 버퍼에는 항복점을 훨씬 상회하는 대변형이 발생하였지만, 내부의 처분용기를 구성하고있는 주철 및 구리에는 여전히 매우 작은 탄성변형 및 항복응력보다 작은 응력이 발생하고 있음을 알 수 있었다. 따라서 갑작스런 10㎝의 수평한 암반 전단력에 대하여 50㎝ 두께의 벤토나이트 버퍼는 안전하게 내부의 처분용기를 보호하고 있음을 알 수가 있다. 해석결과는 또한 벤토나이트 버퍼의 전단변형에 의하여 처분용기에 휨변형이 발생함을 보여주고 있다.
경북 감포지역에서 산출되는 천연 벤토나이트를 이용하여 제올라이트를 합성하였으며 세제용 builder로서 가능성을 연구하였다. 최적의 합성조건은 기질의 몰비가 SiO2/Al2O3=2, Na2O3/Al2O3=1, H2O/A12O3=30이고 90˚C에서 3시간 반응시킬 경우였고, 이 조건에서는 A형 제올라이트가 합성되는 것을 XRD를 통하여 확인하였다. 최적 조건에서 합성된 제올라이트의 이온교환능을 측정하기 위하여 경도 40˚Dh의 CaCl2용액과 30˚C에서 IS분 접촉시킨 결과 264.9mg CaO/g-zeolite 정도로 우수한 값을 나타내었다. 이 시료의 백색도는 89%이었고, 평균 입자크기는 9.95μm이었다.
The swelling capacity of bentonite buffers is vital in high-level radioactive waste (HLW) repositories, as it minimizes groundwater infiltration, prevents nuclides from reaching the biosphere, and stabilizes the HLW canisters. As swelling capacity is a function of temperature, understanding bentonite’s behavior at approximately 100°C (its presumed upper limit) is essential. However, research on this subject has been scarce. Hence, this study explored the effects of thermal treatment of Ca-bentonite at 105°C under injected water pressures. The results suggest a 19% reduction in “swell index” and a 35%–36% decrease in the total pressure in thermally treated bentonite. The heated samples demonstrated higher hydraulic conductivity than the non-heated ones, indicating potential performance deterioration in controlling the fluid movement. Furthermore, the injected water pressure (base pressure) was not fully transmitted to the sample owing to the difference between the base and back pressures, leading to variations in the total pressure despite maintaining a constant differential pressure. Thus, the results demonstrated a degradation in bentonite’s swelling capacity and its compromised role in safe HLW disposal, when subjected to treatment at 105°C. The insights from this research can assist in HLW repository design, while highlighting the need for further research into bentonite’s performance.
A multi-barrier can be applied for the deep geological disposal of high-level radioactive waste. The multi-barrier comprises an engineered barrier and the natural barrier of the host rock. In the engineered barrier, the bentonite buffer is the key component for the disposal container, and the bentonite buffer thickness is given important consideration when designing the engineered barrier. This study reviewed the safety functions of bentonite buffers. Subsequently, the requirements and factors necessary to determine the thickness of the bentonite buffer, including criteria for radiological safety and the thermal stability of the disposal system, were identified. Additionally, the bentonite buffer thicknesses required for the top, bottom, and side of the disposal container were calculated. A double-layered emplacement method is also proposed for the bentonite buffer to improve disposal efficiency in terms of thermal management. Based on radiological safety and thermal stability analyses, an optimal thickness of 0.36 m was found to be appropriate for the bentonite buffer surrounding the disposal container. The thickness of the bentonite buffer above the disposal container can be determined based on the excavation damaged zone depth. The study findings can be used as a reference when designing deep geological disposal systems.
We analyzed the mineral composition of compacted calcium bentonite (GJ-I) and uncompressed sodium bentonite (MX80), both of which were exposed for two years in the YS03 borehole. The YS03 borehole is characterized by a high concentration of anaerobic microorganisms, including sulfate-reducing bacteria, elevated levels of hydrogen sulfide, and high pH conditions. The compacted Ca bentonite showed minimal alteration, with a small amount of new magnetite formation. However, an X-ray diffraction (XRD) analysis revealed that the uncompressed Na bentonite underwent a complete transformation from montmorillonite to muscovite, goethite, and magnetite. Therefore, it is suspected that the compactness of the bentonite significantly impacts the rate of alteration. Furthermore, an X-ray fluorescence (XRF) analysis demonstrated a marked increase in iron oxide in the Na bentonite, whereas key elements of montmorillonite such as alumina (Al2O3), silica (SiO2), and magnesium oxide (MgO) showed substantial decreases. The presumed cause of the alteration in the uncompressed MX80 bentonite is the presence of Fe cations coupled with a high pH environment. We believe that Fe cations, which were likely released from the corrosion of cast iron, played a significant role in altering the montmorillonite lattice.
Se sorption onto Ca-type montmorillonite purified from Bentonil-WRK—a new research bentonite introduced by Korea Atomic Energy Research Institute—was examined under ambient conditions (pH 4−9, pe 7−9, I = 0.01 M CaCl2, and T = 25°C). Se(IV) was identified as the oxidation state responsible for weak sorption (Kd < 22 L∙kg−1) by forming surface complexes with edge functional groups of the montmorillonite. Thermodynamic modeling, considering reaction mechanisms of outer-sphere complexation (≡AlOH2 + + HSeO3 − ⇌ ≡AlOH3SeO3, log K = 0.50 ± 0.21), inner-sphere complexation (2≡AlOH + H2SeO3(aq) ⇌ (≡Al)2SeO3 + 2H2O(l), log K = 7.89 ± 0.51), and Ca2+-involved ternary complexation (≡AlOH + Ca2+ + SeO3 2− ⇌ ≡AlOHCaSeO3, log K = 7.69 ± 0.28) between selenite and aluminol sites of montmorillonite, acceptably reproduced the batch sorption data. Outer- and inner-sphere complexes are predominant Se(IV) forms sorbed in acidic (pH ≈ 4) and near-acidic (pH ≈ 6) regions, respectively, whereas ternary complexation accounts for Se(IV) sorption at neutral pHs under the ambient conditions. The experimental and modeling data generally extend a material-specific sorption database of Bentonil-WRK, which is essential for assessing its radionuclide retention performance as a buffer candidate of deep geological disposal system for high-level radioactive waste.