검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.11 구독 인증기관·개인회원 무료
        Engineered Barrier Systems (EBS) are a key element of deep geological repositories (DGR) and play an important role in safely isolating radioactive materials from the ecosystem. In the environment of a DGR, gases can be generated due to several factors, including canister corrosion. If the gas production rate exceeds the diffusion rate, pore pressures may increase, potentially inducing structural deterioration that impairs the function of the buffer material. Therefore, understanding the hydraulic-mechanical behavior of EBS due to gas generation is essential for evaluating the longterm stability of DGR. This study employed X-ray computed tomography (CT) technology to observe cracks created inside the buffer material after laboratory-scale gas injection experiments. After CT scanning, we identified cracks more clearly using an image analysis method based on machine learning techniques, enabling us to examine internal crack patterns caused by gas injection. In the samples observed in this study, no cracks were observed penetrating the entire buffer block, and it was confirmed that most cracks were created through the radial surface of the block. This is similar to the results observed in the LASGIT field experiment in which the paths of the gas migration were observed through the interface between the container and the buffer material. This study confirmed the applicability of high-resolution X-ray CT imaging and image analysis techniques for qualitative analysis of internal crack patterns and cracks generated by gas breakthrough phenomena. This is expected to be used as basic data and crack analysis techniques in future research to understand gas migration in the buffer material.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Montmorillonite, a versatile clay mineral with a wide range of industrial applications, is often found in natural deposits with impurities that limit its effectiveness. This study investigates the use of column froth flotation as an innovative technique to improve the purity of montmorillonite by selectively removing impurities without affecting its essential properties. Column froth flotation, a well-established mineral separation method, is adapted to address the specific challenges associated with enhancing montmorillonite purity. The process involves conditioning raw montmorillonite with carefully chosen reagents to selectively separate impurities, including quartz, feldspar, and other minerals commonly found alongside montmorillonite in natural deposits. Experimental results confirm the effectiveness of column froth flotation in significantly enhancing the purity of montmorillonite. This method allows for efficient impurity removal while preserving the essential properties of montmorillonite, making it suitable for various industrial applications. The study also explores the optimal conditions and reagent choices to maximize the purification process. In conclusion, column froth flotation offers a promising avenue for enhancing montmorillonite purity without compromising its fundamental properties. This study provides valuable insights into optimizing the process for large-scale industrial applications, facilitating the development of highquality montmorillonite products tailored to specific industrial needs.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The compacted bentonite buffer is a key component of the engineered barrier system in deep geological repositories for high-level radioactive waste disposal. Groundwater infiltration into the deep geological repository leads to the saturation of the bentonite buffer. Bentonite saturation results in bentonite swelling, gelation and intrusion into the nearby rock discontinuities within the excavation damaged zone of the adjacent rock mass. Groundwater flow can result in the erosion and transport of bentonite colloids, resulting in bentonite mass loss which can negatively impact the long-term integrity and safety of the overall engineered barrier system. The hydro -mechanicalchemical interactions between the buffer, surrounding host rock and groundwater influence the erosion characteristics of the bentonite buffer. Hence, assessing the critical hydro-mechanicalchemical factors that negatively affect bentonite erosion is crucial for the safety design of the deep geological repository. In this study, the effects of initial bentonite density, aperture, discontinuity angle and groundwater chemistry on the erosion characteristics of Bentonil WRK are investigated via bentonite extrusion and artificial fracture experiments. Both experiments examine bentonite swelling and intrusion into simulated rock discontinuities; cylindrical holes for bentonite extrusion experiments and plane surfaces for artificial fracture experiments. Compacted bentonite blocks and bentonite pellets are manufactured using a compaction press and granulation compactor respectively and installed in the transparent extrusion cells and artificial fracture cells. The reference test condition is set to be 1.6 g/cm3 dry density and saturation using distilled water. After distilled water or solution injection, the axial and radial expansion of the bentonite specimens into the simulated rock discontinuities are monitored for one month under free swelling conditions with no groundwater flow. Subsequent flow tests are conducted using the artificial fracture cell to determine the critical flow rate for bentonite erosion. The intrusion and erosion characteristics are modelled using a modified hydro-mechanicalchemical coupled dynamic bentonite diffusion model and a fluid-based hydro-mechanical penetration model.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The presence of technological voids in deep geological repositories for high-level radioactive nuclear waste can have negative effects on the hydro-mechanical properties of the engineered barrier system when groundwater infiltrates from the surrounding rock. This study conducted hydration tests along with image acquisition and X-ray CT analysis on compacted Korean bentonite samples, which simulated technological voids filling to investigate the behavior of fracturing (piping erosion) and cracking deterioration. We utilized a dual syringe pump to inject water into a cell consisting of a bentonite block and technological voids at a consistent flow rate. The results showed that water inflow to fill technological voids led to partial hydration and self-sealing, followed by the formation of an erosional piping channel along the wetting front. After the piping channel generated, the cyclic filling-piping stage is characterized by the repetitive accumulation and drop of water pressure, accompanied by the opening and closing of piping channels. The stoppage of water inflow leads to the formation of macro- and micro cracks in bentonite due to moisture migration caused by high suction pressure. These cracks create preferential flow paths that promote longterm groundwater infiltration. The experimental test and analysis are currently ongoing. Further experiments will be conducted to investigate the effects of different dry density in bentonite, flow rate, and chemical composition of injected water.
        5.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) for deep geological disposal of high-level radioactive waste requires a buffer material that can prevent groundwater infiltration, protect the canister, dissipate decay heat effectively, and delay the transport of radioactive materials. To meet those stringent performance criteria, the buffer material is prepared as a compacted block with high-density using various press methods. However, crack and degradation induced by stress relaxation and moisture changes in the compacted bentonite blocks, which are manufactured according to the geometry of the disposal hole, can critically affect the performance of the buffer. Therefore, it is imperative to develop an adequate method for quality assessment of the compacted buffer block. Recently, several non-destructive testing methods, including elastic wave measurement technology, have been attempted to evaluate the quality and aging of various construction materials. In this study, we have evaluated the compressive wave velocity of compacted bentonite blocks via the ultrasonic velocity method (UVM) and free-free resonant column method (FFRC), and analyzed the relationship among compressive wave velocity, dry density, thermal conductivity, and strength parameter. We prepared compacted bentonite block specimens using the cold isostatic pressure (CIP) method under different water content and CIP pressure conditions. Based on multiple regression analysis, we suggest a prediction model for dry density in terms of manufacturing conditions. Additionally, we propose an empirical model to predict thermal conductivity and unconfined compressive strength based on compressive wave velocity. The database and suggested models in this study can contribute to the development of quality assessment and prediction techniques for compacted buffer blocks used in the construction of a disposal repository.
        6.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) is an indispensable element of a deep geological repository (DGR) designed to prevent the discharge of radioactive materials into the environment. The buffer material is a vital component of the EBS by creating a physical and chemical barrier that prevents the migration of radioactive materials. In the disposal environment, gases can be generated from the corrosion of the canister. When the gas generation rate exceeds the diffusion rate, the buffer material’s performance can deteriorate by the physical damage induced by the increase in pore pressure. Therefore, understanding the EBS’s behavior under gas generation conditions is crucial to guarantee the longterm safety and performance of the DGR. Lab-scale and field-scale experiments have been conducted to examine the stability of the buffer material concerning gas generation and movement by the previous researchers. To evaluate long-term stability for more than 100,000 years, it is essential to assess stability using a numerical model verified by these experiments. This study investigated the effect of interfacial characteristics on the numerical modeling accuracy of experimental simulation while verifying a numerical model through field-scale experimental results. The findings of this study are expected to furnish fundamental data for establishing numerical analysis guidelines for the longterm stability assessment of disposal systems.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Backfill is one of the key elements of deep geological disposal. The backfill material is used to fill disposal tunnels and is mainly composed of swellable clay, preventing the migration of nuclide and structurally supporting the tunnel. The selection and application of backfill material are critical for the stable and efficient disposal of spent fuel. Therefore, it is essential to secure various candidate materials for backfill and to comprehensively understand the properties and behavior of these materials. Recently, the Korea Atomic Energy Research Institute has selected a candidate material called Bentonil-WRK and is evaluating its applicability. To utilize this material as backfill, the safety function of a mixed backfill concept, consisting of sand and Bentonil-WRK, was assessed. The swelling pressure was measured as a function of dry density for a bentonite/silica sand mix ratio of 3/7. The results showed that the swelling pressure ranged from 0.15 to 0.273 MPa, depending on the dry density, with higher dry densities resulting in higher swelling pressures. The measured swelling pressure met the target performance criteria suggested by SKB and Posiva (i. e., 0.1 MPa), but did not meet the design requirement for swelling pressure (i. e., 1 MPa). This indicate the need for further research after increasing the mass fraction of bentonite (e. g., mix ratio 4/6 or more). The results of this study are expected to be used in the selection of candidate backfill materials and the establishment of design guidelines for engineered barrier backfill.
        8.
        2022.10 구독 인증기관·개인회원 무료
        Compacted bentonite buffer materials are a key component of the engineered barrier system for high-level radioactive waste disposal. The bentonite buffer is saturated via groundwater flow through the excavation damaged zone in the adjacent rock mass. Bentonite saturation results in bentonite swelling, gelation and intrusion into the nearby rock discontinuities. Groundwater flow can cause bentonite erosion and transportation of bentonite colloids. This bentonite mass loss can negatively impact the long-term integrity of the engineered barrier system. Hence, it is necessary to understand the effects of erosion on the properties of the bentonite buffer. In this study, a series of artificial fracture erosion experiments are conducted to investigate the erosion characteristics of compacted Ca-bentonite buffer materials for different initial dry density conditions. Compacted bentonite blocks and bentonite pellets were manufactured using the cold isostatic pressing technique and granulation compactor respectively. The specimens were placed in a custommade transparent artificial fracture cell and the bentonite intrusion characteristics were monitored for two months under free swelling conditions with no groundwater flow. The radial expansion of the bentonite specimens within the artificial fracture was measured using a digital camera. In addition, the swelling pressure, displacement, and saturation were determined using a load cell-piston system, LVDT, and electrical resistivity electrodes respectively. A hydro-mechanical-chemical coupled dynamic bentonite diffusion model was applied to model the bentonite erosion characteristics using COMSOL Multiphysics.
        9.
        2022.10 구독 인증기관·개인회원 무료
        When a rapid groundwater inflow is introduced from the adjacent rock mass in the early stage of disposal, hydraulic pressure build-up occurs, which may cause piping erosion at the buffer material itself and the interface of the gap-filling material. Such piping erosion in compacted bentonite buffer via interaction between the buffer and the adjacent rock mass may deteriorate the performance of the buffer material. Therefore, it is necessary to understand the conditions and scenarios in which the piping phenomenon around the buffer material occurs for the long-term health of the repository. In this study, laboratory-scale experimental tests of piping erosion in buffer and interfacial rock was introduced. ø 100 mm × 200 mm height compacted bentonite specimens were placed in a cylindrical acetal cell, and the distilled water was continuously injected at a flow rate of 0.068 L/min using a dual syringe pump. The inflow of water was generated from the bottom and side cell of buffer material. During water injection, injected water pressure and amount were measured with visual observation. The results showed that the external saturation of buffer firstly occurs followed by piping crack generation along the wetting front. The additional piping channels were generated and merged with others. As the injection stopped, the swelling and self-sealing behavior of buffer material were observed. Moreover, X-ray CT scanning of the cell was conducted after the piping simulation to analyze the piping channels and saturation depth. The results highlight the piping erosion phenomenon mainly occurs due to the presence of a gap outside the buffer material. Further experimental cases is need to comprehensively understand piping phenomena in buffer material for assessing the long-term stability of underground radioactive waste disposal systems.
        10.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) NH4OH. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and NH4OH. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in NH4OH. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the NH4OH-based magnetite.
        4,000원