검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The effectiveness of a crystalline natural barrier in providing sealing capabilities is based on the behavior of numerous fractures and their intersections within the rock mass. It is important to evaluate the evolving characteristics of fractured rock, as the hydro-mechanical coupled processes occurring through these fractures play a dominant role. KAERI is actively developing a true tri-axial compression test system and concurrently conducting hydro-mechanical experiments using replicated fractured rock samples. This research is focused on a comprehensive examination of coupled processes within fractures, with a particular emphasis on the development of true tri-axial testing equipment. The designed test system has the capability to account for three-dimensional stress conditions, including vertical and both maximum and minimum horizontal principal stresses, realizing the disposal conditions at specific underground depths. Notably, the KAERI-designed test system employs the mixed true tri-axial concept, also known as the Mogi-type, which allows for fluid flow into fractures under tri-axial compression conditions. This system utilizes a hydraulic chamber to maintain constant stress in one direction through the application of oil pressure, while the other two directional stresses are applied using rigid platens with varying magnitudes. Once these mechanical stress conditions are established, control over fluid flow is achieved through the rigid platens in contact with the specimen section. This pioneering approach effectively replicates in-situ mechanical conditions while concurrently observing the internal fluid flow patterns within fractures, thereby enhancing our capacity to study these coupled phenomena. As future research, numerical modeling efforts will be proceeding with experimental data-driven approaches to simulate the coupled behavior within the fractures. In these numerical studies, two distinct fracture geometry domains will be generated, one employing simplified rough-walled fractures and the other utilizing mismatched rough-walled fractures. These investigations mark the preliminary steps in the process of selecting and validating an appropriate numerical model for understanding the hydro-mechanical evolution within fractures.
        3.
        2023.11 구독 인증기관·개인회원 무료
        It is crucial to understand the hydro-mechanical behavior of rock mass to assess the performance of natural barriers. As rock fractures serve as both mechanically weak planes and prominent pathways for hydraulic flow, they significantly influence the hydro-mechanical behavior of the rock mass. Hence, understanding the characteristics of rock fractures is necessary to analyze the long-term behavior of natural barriers. In particular, fracture apertures are crucial parameters directly associated with groundwater flow and consequently hold significant importance in determining the hydro-mechanical behavior of natural barriers. Fracture apertures are defined as mechanical and hydraulic apertures, and various studies have been conducted to measure and analyze them. However, direct measurement of mechanical aperture according to changes in normal stress is known to be a challenging task. For this reason, there has been a scarcity of direct comparative findings between mechanical and hydraulic apertures under various normal stress conditions. This study aims to analyze the characteristics of the mechanical and hydraulic apertures according to changes in normal stress based on experimental results. A digital analysis technique using a pressure film image was applied to analyze the mechanical aperture characteristics of the fracture. This technique can be applied by performing a pressure film compression test and a normal stiffness test on a fracture specimen, and has the advantage of being able to derive mechanical apertures under various normal stress conditions. The hydraulic aperture characteristics of the fracture were analyzed based on Cubic law after measuring the flow rate by performing a constant pressure injection test under triaxial compression conditions. By applying various confining pressures, it was possible to examine the hydraulic apertures according to changes in normal stress conditions. Through the experimental results, the relationship between the mechanical and hydraulic apertures of the fracture was summarized under various normal stress conditions. In addition, the experimental results were used to examine the applicability of various empirical equations for mechanical and hydraulic apertures proposed in previous studies. The characteristics of the fracture aperture resulting from this study are significant because they are required in the hydro-mechanical model of natural barriers. Future studies will entail further experiments, with the objective of establishing novel relationships based on the accumulation of experimental data.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The high-level radioactive waste repository must ensure its performance for a long period of time enough to sufficiently reduce the potential risk of the waste, and for this purpose, multibarrier systems consisting of engineered and natural barrier systems are applied. If waste nuclides leak, the dominating mechanisms facilitating their movement toward human habitats include advection, dispersion and diffusion along groundwater flows. Therefore, it is of great importance to accurately assess the hydrogeological and geochemical characteristics of the host rock because it acts as a flow medium. Normally, borehole investigations were used to evaluate the characteristics and the use of multi-packer system is more efficient and economical compared to standpipes, as it divides a single borehole into multiple sections by installing multiple packers. For effective analyses and groundwater sampling, the entire system is designed by preselecting sections where groundwater flow is clearly remarkable. The selection is based on the analyses of various borehole and rock core logging data. Generally, sections with a high frequency of joints and evident water flow are chosen. Analyzing the logging data, which can be considered continuous, gives several local points where the results exhibit significant local changes. These clear deviations can be considered outliers within the data set, and machine learning algorithms have been frequently applied to classify them. The algorithms applied in this study include DBSCAN (density based spatial clustering of application with noise), OCSVM (one class support vector method), KNN (K nearest neighbor), and isolation forest, of which are widely used in many applications. This paper aims to evaluate the applicability of the aforementioned four algorithms to the design of multi-packer system. The data used for this evaluation were obtained from DB-2 borehole logging data, which is a deep borehole locates near KURT.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Discontinuities exert great influence on the thermal, hydraulic, and mechanical behavior of rock mass. Rock joint is one of the most frequently encountered discontinuities in many engineering applications, such as tunnel, rock slope and repository for high level radioactive waste. Therefore, the effects of rock joint should be thoroughly investigated in various aspects. Rock joint has gone through many geological processes and its behavior can be characterized by many properties. Among them, geometric properties, such as joint roughness, aperture, and contact area can affect mechanical and hydraulic properties and vice versa. Therefore, accurate understanding and characterization of the geometric properties are of importance. Generally, the geometric properties of a joint are obtained or estimated using the surface height or elevation, which could be measured by various contact or noncontact methods. Then, the coordinates of the surfaces are used to calculate several parameters, for instance roughness indexes and mechanical aperture, in a quantitative manner. This paper is a part of SKB task force project that aims to evaluate the geometric properties of rock joints and to analyze the hydromechanical behavior within a rough joint considering the properties. Four pairs of joint surfaces were laser-scanned in order to obtain coordinates of the surfaces and then the coordinates were used to calculate the roughness, directional roughness, aperture, and spatial correlations. At the same time, fluid flow within a rough joint were simulated by a commercial FEM code, considering the variation of aperture space due to normal load. Flowrate, flow path, and channelization were investigated in an aperture scale. Since rock mass consists of several joints and/or joint sets, characterization of a single rock joint can be utilized for analyzing the behavior of rock mass as a reference.
        7.
        2023.05 구독 인증기관·개인회원 무료
        The distribution characteristics of rock fractures determine the hydro-mechanical behavior of natural barriers. Rock fractures are defined by various parameters, which are analyzed as the probability distribution from observation results by surveying the exposed rock surface or borehole. The size is known to have the most uncertainty among the fracture parameters because it cannot be directly measured. Therefore, various estimation methods have been proposed for fracture size distribution using the fracture traces observable on the rock surface. However, most methods are based on a planar survey area, limiting their applicability to the underground research laboratory (URL) excavated in the form of tunnels. This study aims to review a method that can be applied to estimate the size distribution of fractures in deep rock masses at the URL site. The estimation method using the joint center volume (JCV) has recently been extended to be applicable regardless of the geometry of the survey area, which means that it can be applied to the URL site with complex structures. To apply the JCV-based estimation method to non-planar survey areas, JCV calculation using Monte Carlo simulation and estimation of fracture size distribution using the maximum likelihood method are required. In this study, we applied the JCV-based estimation method to a tunnel-shaped survey area to examine its applicability to the URL site. The error rates were analyzed when there were fracture sets with various orientations, size distributions, and maximum fracture sizes in the rock mass, and it was found to be less than 10% in all cases. This result indicates that the JCV-based estimation method can be used to estimate the fracture size distribution of the surrounding rock mass if accompanied by a reliable survey of fracture traces on the tunnel surface inside the URL site. Also, since there are no restrictions on the geometry of the survey area, we can continuously update the estimation results during the URL excavation process to increase reliability. The fracture size distribution is essential for constructing the discrete fracture network (DFN) model of the rock mass units at the URL site. In the future, the uncertainty for the fracture size in the DFN model is expected to be reduced by applying the JCV-based estimation method.
        8.
        2022.10 구독 인증기관·개인회원 무료
        A rock joint exerts significant influences on the rock mass behavior in terms of thermal, hydraulic, and mechanical (THM) aspects. Therefore, its features should be thoroughly investigated in various rock mechanical projects, such as high-level radioactive waste (HLW) disposal repository, tunnel, and rock slope. Meanwhile, it is essential to guarantee the safety of the disposal repository for a very long period of time and it should prepare measures for various risks, which may possibly encounter during that period. In general, direct shear tests for a rock joint are conducted to investigate the possibility of frictional sliding of the joint under specific loading conditions or to predict the shear strength of the joint. However, it is necessary to consider whether regional sliding of a rock joint or reactivation of a fault might occur due to an earthquake or redistribution of the in-situ stresses because the expected operation period of the repository is quite long, and various situations can happen. A slide-hold-slide test for a rock joint is a practical test that can investigate the time-dependent behavior or frictionalhealing of a joint. The test enables an estimation of the stress build-up phenomenon after strain energy release in a quantitative manner. In this study, a series of slide-hold-slide tests were carried out in order to investigate the characteristics. Joint specimens were made from mortar, which is a rock-like and brittle material, so as to consider the effect of joint roughness and to secure the reproducibility of the tests. At the same time, mechanical conditions as well as thermal and hydraulic were applied in order to take the environment of the repository into account. As a result, the behavior of shear stress recovery was observed, and the effects of THM coupled condition on the recovery were investigated. This study presents fundamental results of the experiments, and further research outcomes, including time dependent behavior of a joint, will be presented sequentially.