검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        1.
        2023.11 구독 인증기관·개인회원 무료
        The radwaste repository consists of a multi-barrier, including natural and engineered barriers. The repository’s long-term safety is ensured by using the isolation and delay functions of the multi-barrier. Among them, natural barriers are difficult to artificially improve and have a long time scale. Therefore, in order to evaluate its performance, site characteristics should be investigated for a sufficient period using various analytical methods. Natural barriers are classified into lithological and structural characteristics and investigated. Structural factors such as fractures, faults, and joints are very important in a natural barrier because they can serve as a flow path for groundwater in performance evaluation. Considering the condition that the radioactive waste repository should be located in the deep part, the drill core is an important subject that can identify deep geological properties that could not be confirmed near the surface. However, in many previous studies, a unified method has not been used to define the boundaries of structural factors. Therefore, it is necessary to derive a method suitable for site characteristics by applying and comparing the boundary definition criteria of various structural factors to boreholes. This study utilized the 1,000 m deep AH-3 and DB-2 boreholes and the 500 m deep AH-1 and YS- 1 boreholes drilled around the KURT (KAERI Underground Research Tunnel) site. Methods applied to define the brittle structure boundary include comparing background levels of fracture and fracture density, excluding sections outside the zone of influence of deformation, and confining the zone to areas of concentrated deformation. All of these methods are analyzed along scanlines from the brittle structure. Deriving a site-specific method will contribute to reducing the uncertainties that may arise when analyzing the long-term evolution of brittle structures within natural barriers.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
        3.
        2023.11 구독 인증기관·개인회원 무료
        For the performance and safety assessments of deep geological disposal, developing scenarios, which represent possible long-term changes in the surface environment, is required. These scenarios are formulated using a list of FEPs (Features, Events, and Processes) that describes characteristics of disposal system components. In this study, using international FEP (IFEP) list from OECD/NEA, the individual FEPs related to uplift-subsidence and erosion-deposition were analyzed, and the correlation between each FEP was evaluated. From the IFEP list, the elements related to uplift-subsidence and erosion-deposition processes that cause long-term changes in the surface environment were identified. Uplift-subsidence, erosion - deposition, and the long-term change factors caused by them were analyzed and a correlation diagram was produced according to their interactions. Basis for the integrated analysis of long-term changes in the surface environment and the construction of long-term change scenarios were established considering the evaluation of the factors that cause uplift-subsidence and erosiondeposition, and their correlation with the hydrology-hydrogeology, topography and local climate of the affected surface. The results of this study will be used for systematically formulating scenarios of long-term changes in the surface environment due to uplift-subsidence and erosion-deposition based on natural phenomena. And, it may be necessary to modify and supplement the correlation of domestic FEPs based on the correlation diagram of IFEPs in order to analyze long-term changes in the surface environment in an integrated manner.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The effectiveness of a crystalline natural barrier in providing sealing capabilities is based on the behavior of numerous fractures and their intersections within the rock mass. It is important to evaluate the evolving characteristics of fractured rock, as the hydro-mechanical coupled processes occurring through these fractures play a dominant role. KAERI is actively developing a true tri-axial compression test system and concurrently conducting hydro-mechanical experiments using replicated fractured rock samples. This research is focused on a comprehensive examination of coupled processes within fractures, with a particular emphasis on the development of true tri-axial testing equipment. The designed test system has the capability to account for three-dimensional stress conditions, including vertical and both maximum and minimum horizontal principal stresses, realizing the disposal conditions at specific underground depths. Notably, the KAERI-designed test system employs the mixed true tri-axial concept, also known as the Mogi-type, which allows for fluid flow into fractures under tri-axial compression conditions. This system utilizes a hydraulic chamber to maintain constant stress in one direction through the application of oil pressure, while the other two directional stresses are applied using rigid platens with varying magnitudes. Once these mechanical stress conditions are established, control over fluid flow is achieved through the rigid platens in contact with the specimen section. This pioneering approach effectively replicates in-situ mechanical conditions while concurrently observing the internal fluid flow patterns within fractures, thereby enhancing our capacity to study these coupled phenomena. As future research, numerical modeling efforts will be proceeding with experimental data-driven approaches to simulate the coupled behavior within the fractures. In these numerical studies, two distinct fracture geometry domains will be generated, one employing simplified rough-walled fractures and the other utilizing mismatched rough-walled fractures. These investigations mark the preliminary steps in the process of selecting and validating an appropriate numerical model for understanding the hydro-mechanical evolution within fractures.
        5.
        2023.11 구독 인증기관·개인회원 무료
        It is crucial to understand the hydro-mechanical behavior of rock mass to assess the performance of natural barriers. As rock fractures serve as both mechanically weak planes and prominent pathways for hydraulic flow, they significantly influence the hydro-mechanical behavior of the rock mass. Hence, understanding the characteristics of rock fractures is necessary to analyze the long-term behavior of natural barriers. In particular, fracture apertures are crucial parameters directly associated with groundwater flow and consequently hold significant importance in determining the hydro-mechanical behavior of natural barriers. Fracture apertures are defined as mechanical and hydraulic apertures, and various studies have been conducted to measure and analyze them. However, direct measurement of mechanical aperture according to changes in normal stress is known to be a challenging task. For this reason, there has been a scarcity of direct comparative findings between mechanical and hydraulic apertures under various normal stress conditions. This study aims to analyze the characteristics of the mechanical and hydraulic apertures according to changes in normal stress based on experimental results. A digital analysis technique using a pressure film image was applied to analyze the mechanical aperture characteristics of the fracture. This technique can be applied by performing a pressure film compression test and a normal stiffness test on a fracture specimen, and has the advantage of being able to derive mechanical apertures under various normal stress conditions. The hydraulic aperture characteristics of the fracture were analyzed based on Cubic law after measuring the flow rate by performing a constant pressure injection test under triaxial compression conditions. By applying various confining pressures, it was possible to examine the hydraulic apertures according to changes in normal stress conditions. Through the experimental results, the relationship between the mechanical and hydraulic apertures of the fracture was summarized under various normal stress conditions. In addition, the experimental results were used to examine the applicability of various empirical equations for mechanical and hydraulic apertures proposed in previous studies. The characteristics of the fracture aperture resulting from this study are significant because they are required in the hydro-mechanical model of natural barriers. Future studies will entail further experiments, with the objective of establishing novel relationships based on the accumulation of experimental data.
        6.
        2023.11 구독 인증기관·개인회원 무료
        The high-level radioactive waste repository must ensure its performance for a long period of time enough to sufficiently reduce the potential risk of the waste, and for this purpose, multibarrier systems consisting of engineered and natural barrier systems are applied. If waste nuclides leak, the dominating mechanisms facilitating their movement toward human habitats include advection, dispersion and diffusion along groundwater flows. Therefore, it is of great importance to accurately assess the hydrogeological and geochemical characteristics of the host rock because it acts as a flow medium. Normally, borehole investigations were used to evaluate the characteristics and the use of multi-packer system is more efficient and economical compared to standpipes, as it divides a single borehole into multiple sections by installing multiple packers. For effective analyses and groundwater sampling, the entire system is designed by preselecting sections where groundwater flow is clearly remarkable. The selection is based on the analyses of various borehole and rock core logging data. Generally, sections with a high frequency of joints and evident water flow are chosen. Analyzing the logging data, which can be considered continuous, gives several local points where the results exhibit significant local changes. These clear deviations can be considered outliers within the data set, and machine learning algorithms have been frequently applied to classify them. The algorithms applied in this study include DBSCAN (density based spatial clustering of application with noise), OCSVM (one class support vector method), KNN (K nearest neighbor), and isolation forest, of which are widely used in many applications. This paper aims to evaluate the applicability of the aforementioned four algorithms to the design of multi-packer system. The data used for this evaluation were obtained from DB-2 borehole logging data, which is a deep borehole locates near KURT.
        7.
        2023.11 구독 인증기관·개인회원 무료
        Long-term climate and surface environment changes can influence the geological subsurface environment evolution. In this context, a fluid flow pathway developing and connection possibility can be increased between the near-surface zone and deep depth underground. Thus, it is necessary to identify and prepare for the overall fluid flow at the entire geological system to minimize uncertainty on the spent nuclear fuel (SNF) disposal safety. The fluid flow outside the subsurface environment is initially penetrated through the surface and then the unsaturated area. Thus, the previously proved reports, POSIVA in Finland, suggested that sequential research about the fluid infiltration experiment (INEX) and the investigation is necessary. Characterizing the unsaturated zone can help predict changes and ensure the safety of SNFs according to geological long-term evolution. For example, the INEX test was conducted at the upper part of ONKALO, about 50 to 100 m depth, to understand the geochemical evolution of the groundwater through the unsaturated zone, to evaluate the main flow of groundwater that can approach the SNF disposal reservoir, and to estimate the decreasing progress of the buffering capacity along the pathway through the deep geological disposal. In the present study, a preliminary test was performed in the UNsaturated-zone In-situ Test (UNIT) facility near the KAERI underground research tunnel to design and establish a methodology for infiltration experiments consistent with the regional characteristics. The results represented the methodological application is possible for characterizing unsaturated-zone to perform infiltration experiments. The scale of the experiment will be expanded sequentially, and continuous research will be conducted for the next application.
        8.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Long-term evolution of the surface environments can affect the safety of deep geological disposal. Therefore, it is important to understand the water balance components constituting the water cycle among atmosphere, surface, and subsurface. In Finand, the surface and near-surface hydrological model (SHYD) was developed to calculate the water balance of Olkiluoto Island. Through the intensive site investigations, the data sets as input for the site scale model in present-day conditions have been collected such as transpiration and meteorological data. In this study, weighing lysimeter method was selected to quantify small-scale soil water balance of the vadose zone in the UNsaturated zone In-situ Test facility (UNIT) around KAERI Underground Research Tunnel. Hydrological components such as precipitation, evapotranspiration (ET) and leachate were derived from water balance analysis on the lysimeter measurements in UNIT. Among the hydrological components, actual ET accounts for more than 50% of the annual precipitaion, and thus plays an important role on predicting the hydrological evolution in the future. In this context, actual ET measured from the weighing lysimeter was compared with potential ET estimated from meteorological data using FAO-56 Penman-Monteith method.
        10.
        2023.05 구독 인증기관·개인회원 무료
        A radioactive waste repository consists of engineered barriers and natural barriers and must be safely managed after isolation. Geologic events in natural barriers should be categorized and evaluated according to their magnitude to assess the present and future stability of disposal. Among the longterm evolutionary elements of natural barriers, faults are a small portion of the Earth’s crust. Still, they play an important role in nuclide transport as conduits for fluids moving deep underground. In addition, the physical and chemical properties of fault rocks are useful for understanding the longterm and short-term behavior of faults. Paleomagnetic research has been used extensively and successfully for igneous, metamorphic, and sedimentary rocks. In addition, magnetic characterization of fault rocks can be used to describe faults or infer the timing of major geological events along fault zones. Components of magnetization defined in fault-breccias were attributed to chemical processes associated with hydrothermal mineralization that accompanied or post-dated tectonic activity along the fault. The study of magnetic minerals in fault rocks can be used as “strain indicators”, “geothermometers”, etc. This study is a preliminary test of magnetic properties using fault gouges. Fault gouges are not well preserved in typical terrestrial environments. Access to fresh gouges typically requires trenching through faults or sampling with a core drill. Fortunately, it is a magnetic property study using a fault gouge that exists on the inner wall of KURT (KAERI Underground Research Tunnel). This is to identify the motion history of the fault and, furthermore, to understand the stress structure at the time of fault creation. In addition, it can be presented as evidence for evaluating faults that may appear in future URL (Underground Research Laboratory).
        11.
        2023.05 구독 인증기관·개인회원 무료
        Performance and safety assessments for deep geological disposal are often conducted over a longterm time scale, such as from hundreds of thousands to a million years. During this period, it is expected that the surface environment will be changed significantly. Uplift-subsidence and erosion-deposition are thought to be included as the main causes of the changes, and it is necessary to evaluate their expected effects. In this study, the conceptual processes of the changes in the surface environment components were to be presented by identifying the uplift-subsidence and erosion-deposition processes and analyzing their effect on the surface environment components. For inferring the long-term change process of the surface environment due to the internal activities of the Earth, the process of uplift and subsidence caused by crustal movements that change the subsurface environment through the deep and sallow underground was briefly presented in the form of a chain flowchart. Uplift-subsidence is mainly caused by diastrophism due to tectonic movement, such as subduction at the boundary of plates. They can change the geomorphology by affecting sealevel change and erosion-deposition. The changed geographical features have an influence on the distribution of surface water and the flow path of groundwater. They also have an impact on the scale and processes of local uplift and erosion, which can be the main factors of pedogenesis and vegetation in the local site. The results of this study can be helpful for formulating scenarios related to long-term evolution in the surface environment required for performance and safety assessments of deep geological disposal.
        12.
        2023.05 구독 인증기관·개인회원 무료
        A methodology is under development to reconstruct and predict the long-term evolution of the natural barrier comprising the site of radioactive waste disposal. The natural barrier must protect the human zone from radionuclides for a long time. So for this, we need to be able to restore the evolution of the bedrock constituting the natural barrier from the past to the present and to predict from the present to the future. A methodology is being studied using surface outcrop, tunnel face of KURT (KAERI Underground Research Tunnel), and drill core at KAERI (Korea Atomic Energy Research Institute). Among them, drill core is an essential material for identifying deep geological properties, which could not be confirmed near the surface when considering the geological condition of the repository in the deep part. In this study, we selected several qualitative and quantitative analyses to construct a deep lithological model from the disposal perspective. These were applied to drill core samples around the KURT. There are the dikes presumed the Cretaceous were intruded by Jurassic granitoids in the study area. Analyzing trace elements of each rock type in the study area classified through geochemical characteristics and microstructure in previous studies made it possible to obtain qualitative information on the petrogenetic process. In addition, synthesizing the quantitative numerical age allows for grasping the evolution of bedrock, including intrusion and cutting relationships. LAICPMS was used for determining the age of zircons in plutonic rocks. The highly reliable 40Ar-39Ar method was selected for volcanic rocks because it can correct the loss of Ar gas and obtain the values of two types of Ar isotopes in a single sample. As a result, it was possible to infer the formation environment of rocks through anomalies in specific trace element content. And according to the numerical ages, it was possible to support the known separated rock type found in previous studies or to present a quantitative precedence relation for unclassified rocks. These methods could be applied to reconstruct the long-term evolution of bedrock within natural barriers.
        13.
        2023.05 구독 인증기관·개인회원 무료
        In KAERI, a site descriptive model for stress field estimation had already been constructed by using integrated field data within KURT site scale. A sub-divided rock block domain containing major fracture zones has spatial rock mass and fault properties. The properties were decided based on the rock classification results of several borehole investigations. Modeling for maximum and minimum horizontal stress field estimation was performed and compared with the in-situ data. As a result, a depth-dependent stress ratio was adopted to obtain numerical results closer to actual in-situ data. Although the results were suitable at a relatively low depth (~500 m), there is still some deviation trend at a deep depth. This study aims to improve these modeling results by incorporating not only depth-dependent stress ratio but also changes in rock mass properties along the depth. The deep borehole of DB2 in the KURT site indicated fracture distribution corresponding to the property changes. Natural fractures are typically randomly oriented, and the fracture frequency decreases with increasing depth. The increase in P-wave velocity log data accompanies these features. A discrete fracture network (DFN) model can be used to simulate fractured rock explicitly, but DFN modeling is not feasible for site scale analysis because of its numerical efficiency. Therefore, as a preliminary model in this study, the effect of fracture distribution was considered by substituting the influence for the depth-dependent property. The properties were estimated from the fracture frequency and P-wave velocity log data. The influence of elastic modulus and density on the site stress field was dominant, with decreasing the deviation trend between modeling and in-situ data at a deep depth. Considering that the depth of the repository construction is within about 500 m, it may not be necessary to consider the change of rock properties with depth. However, it was determined that the rock property effect might need to be considered when the loading conditions change due to subsidence in the long-term evolution scenario. Continuously, this site descriptive modeling will be interdependently conducted with a representative DFN block model for deriving equivalent properties in fractured rock.
        14.
        2023.05 구독 인증기관·개인회원 무료
        The distribution characteristics of rock fractures determine the hydro-mechanical behavior of natural barriers. Rock fractures are defined by various parameters, which are analyzed as the probability distribution from observation results by surveying the exposed rock surface or borehole. The size is known to have the most uncertainty among the fracture parameters because it cannot be directly measured. Therefore, various estimation methods have been proposed for fracture size distribution using the fracture traces observable on the rock surface. However, most methods are based on a planar survey area, limiting their applicability to the underground research laboratory (URL) excavated in the form of tunnels. This study aims to review a method that can be applied to estimate the size distribution of fractures in deep rock masses at the URL site. The estimation method using the joint center volume (JCV) has recently been extended to be applicable regardless of the geometry of the survey area, which means that it can be applied to the URL site with complex structures. To apply the JCV-based estimation method to non-planar survey areas, JCV calculation using Monte Carlo simulation and estimation of fracture size distribution using the maximum likelihood method are required. In this study, we applied the JCV-based estimation method to a tunnel-shaped survey area to examine its applicability to the URL site. The error rates were analyzed when there were fracture sets with various orientations, size distributions, and maximum fracture sizes in the rock mass, and it was found to be less than 10% in all cases. This result indicates that the JCV-based estimation method can be used to estimate the fracture size distribution of the surrounding rock mass if accompanied by a reliable survey of fracture traces on the tunnel surface inside the URL site. Also, since there are no restrictions on the geometry of the survey area, we can continuously update the estimation results during the URL excavation process to increase reliability. The fracture size distribution is essential for constructing the discrete fracture network (DFN) model of the rock mass units at the URL site. In the future, the uncertainty for the fracture size in the DFN model is expected to be reduced by applying the JCV-based estimation method.
        15.
        2023.05 구독 인증기관·개인회원 무료
        The deep geologic repository (DGR) concept is widely accepted as the most feasible option for the final disposal of spent nuclear fuels. In this concept, a series of engineered and natural barrier systems are combined to safely store spent nuclear fuel and to isolate it from the biosphere for a practically indefinite period of time. Due to the extremely long lifetime of the DGR, the performance of the DGR replies especially on the natural geologic barriers. Assessing the safety of the DGR is thus required to evaluate the impacts of a wide range of geological, hydrogeological, and physicochemical processes including rare geological events as well as present water cycles and deep groundwater flow systems. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the numerical models used for safety evaluation need to be comprehensive, robust, and efficient. This study describes the development of an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be approved with confidence by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM under development can currently simulate overland flow, groundwater flow, near surface evapotranspiration in a modular manner. The IHM can also be considered as a framework as it can easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using illustrative examples.
        16.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata’s movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.
        6,300원
        17.
        2022.10 구독 인증기관·개인회원 무료
        The change of surface environments (e.g., climate change, uplift/subsidence, and erosion) can undermine the long-term safety of a high-level radioactive waste repository. Therefore, understanding the water cycle between atmosphere, surface, and subsurface is essential to ensure the long-term safety of deep geological disposal and consequently to gain public acceptance for the repository. Among hydrologic components (e.g., precipitation, interception, runoff, infiltration, evapotranspiration (ET), and recharge) which constitute the water cycle, ET is more than half of the total precipitation and plays a crucial role in the water and energy transfer among the three systems. Although various methods for ET evaluation (e.g., Bowen Ratio, Eddy Covariance, Optical Scintillation, and Weighing Lysimeter methods) have been developed, many influential factors such as vegetation, climate, and moisture content make its accurate evaluation still tricky. In this work, we chose weighing lysimeter and Penman-Monteith methods for direct/indirect estimation of ET, and installed a smart field lysimeter and a micro-meteorological station around KAERI Underground Research Tunnel. Water balance in the unsaturated zone and five climatic variables (air temperature, humidity, precipitation, radiation, and wind speed/direction) were measured more than once per 10 minutes for six months from April to September, 2022. From the measurements, daily actual and potential ET values at the study site were calculated and compared. We also discussed the applicability and limitation of current methods and ET assessments at different spatial scales regarding verifying and validating the developing numerical models.
        18.
        2022.10 구독 인증기관·개인회원 무료
        The hydro-mechanical behavior of rock mass in natural barriers is a critical factor of interest, and it is mainly determined by the characteristics of the fractures distributed in the rock mass. In particular, the aperture and contact area of the fractures are important parameters directly related to the fluid flow and significantly influence the hydro-mechanical behavior of natural barriers. Therefore, it is necessary to analyze the aperture and contact area of fractures distributed in potential disposal sites to examine the long-term evolution of the natural barriers. This study aims to propose a new technique for analyzing the aperture and contact area using the natural fractures in KURT (KAERI Underground Research Tunnel), an underground research facility for the deep geological disposal of high-level radioactive waste. The proposed technique consists of a matching algorithm for the three-dimensional point cloud of the upper and lower fracture surfaces and a normal deformation algorithm that considers the fracture normal stiffness. In the matching process of upper and lower fracture surfaces, digital images obtained from compression tests with pressure films are used as input data. First, for the primary matching of the upper and lower fracture surfaces, an iterative closest point (ICP) algorithm is applied in which rotation and translation are performed to minimize the distance error. Second, an algorithm for rotation about the x, y, and z axes and translation in the normal direction is applied so that the contact area of the point cloud is as consistent as possible with the pressure film image. Finally, by applying the normal deformation algorithm considering the fracture normal stiffness, the aperture and contact area of the fracture according to the applied normal stress are derived. The applicability of the proposed technique was validated using 12 natural fractures sampled from KURT, and it was confirmed that the initial apertures were derived similarly to the empirical equation proposed in the previous study. Therefore, it was judged that the distribution of apertures and contact areas according to applied normal stress for laboratory-scale fractures could be derived through the technique proposed in this study.
        19.
        2022.05 구독 인증기관·개인회원 무료
        It can take hundreds of thousands of years for decreasing radiological effects of high-level radioactive wastes to those of natural background radiation. Therefore, long-term time scale should be considered in order to demonstrate performance and safety of deep geological disposal of the radioactive wastes. The changes of surface environment for these long-term time scale can have influence on safety analysis by changing transport path of radionuclides from the radioactive wastes. Changes in climate is considered as one of main factors causing the long-term changes of the surface environment. The own effects and interactions of climate with other components of the geological disposal system are organized in features, events, and processes (FEPs). In this study, some natural processes occurred by changes of climate were suggested and the connectivity between each process is proposed based on the relation of the FEPs concerned with the changes of climate and surface environment. The processes were classified into global and regional/local scales and was analyzed, respectively. Then, the influences of the processes on shallow groundwater and surface water body environment, which might be transport path of radioactive nuclides in local/site scales, were expected. As the proposed connection demonstrate the order or hierarchical relations of the natural processes, it can shows that some output by a certain process may be input of other process connected the former process in numerical simulations for interpreting the processes. If the connection may be considered to be suitable to represent longterm changes of the surface environment, it can be evaluated that the expected scenarios based on the connection is also proper. In addition, it can be helpful in selecting factors to be studied more detailed in terms of climate change for expecting long-term changes in the surface environment by analysis on the input and output data. The results of this study can be used as basic approaches to represent the long-term changes in the surface environment caused by specific natural processes from changes of climate. It will be also helpful for formulating scenarios related to long-term evolution in the surface environment required for performance and safety assessments of the deep geological disposal.
        20.
        2022.05 구독 인증기관·개인회원 무료
        Through constructing statistical fracture network model based on discrete element method, the evolution characteristics of the fracture aperture had been directly simulated and evaluated caused by redistributed stress after the borehole excavation. This study focuses on the size effect of the discrete element method for the analysis of the effective distance of fracture aperture change after the borehole excavation. A two-dimensional trace-type domain with a maximum size of 1.1 m2 was created using a discrete fracture network with stochastic information of KURT. A total of eight domains with different sizes were constructed from the largest domain area to the 0.4 m2 analysis area. The aperture change ratio which can be depending on the domain size was examined. The ratio was investigated by comparing the aperture size before and after the simulation of borehole excavation. In addition, the effective range of aperture changes was analyzed by comparing the re-distribution distance from the center of the borehole. Based on dimensional analysis, input variables (borehole radius, occurrence distance of aperture changes, domain size) were modeled using exponential distribution form. Through the analysis model, two dimensionless variables were derived to investigate the expected distance of the aperture changes and appropriate DFN domain size for simulating bole excavation. As an application example of the 3-inch borehole simulation, the analysis model predicted that the range of aperture changes could occur within a radius of about 0.98 m from the borehole center, and the suitable size of the model had been inferred as about 5 × 5 m for minimizing the domain size effect.
        1 2 3