The backfill close the deep geological disposal system by filling the disposal tunnel and the connecting tunnel after the installation of buffer in the disposal hole. SKB and Posiva have established and designed the safety function of the backfill for the common goal of the deep geological disposal system. The safety function of backfill material has been set hydraulic conductivity of less than 10−10 m·s−1, a swelling pressure of 0.2 MPa, a compressive modulus of 10 MPa or a buffer density of 1,950 kg·m−3 or more, and freezing resistance. For the selection of the optimum backfill material, SKB and Posiva developed the concept of the backfill and evaluated the candidate that satisfies the requirements in four steps. In the first step, the performance and function that the backfill material should have were conceptualized. For the second step, laboratory tests and in-depth analysis of the candidate material properties were conducted. At this step, the focus has been on testing with the concept of the block method, using key candidate materials. In step 3, laboratory and large-scale experiments were performed to test engineering feasibility. In addition, design specifications for backfill materials were set based on site conditions, installation methods, and short- and long-term functions of materials. In Korea, it is only now in the step of selecting the concepts of the safety function. Therefore, it is necessary to benchmark the development process based on the previous studies of SKB and Posiva. In this study, candidate materials, experimental methods, and results were analyzed. As a result, the research steps and conditions for the selection of the optimum backfill material were reviewed. Using this study, the research steps of domestic backfill was suggested to develop within a short time for the Korean deep geological disposal system.