논문 상세보기

Safety Evaluation in Case of Accidents Handling Glass Fiber Radioactive Waste Using Q-system

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430485
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Glass fiber, which was used as an insulation material in pipes near the steam generator system of nuclear power plants, is brittle and the size of crushed particles is small, so glass fiber radioactive waste (GFRW) can cause exposure of workers through skin and breathing during transport and handling accidents. In this study, Q-system which developed IAEA (International Atomic Energy Agency) for setting the limit of radioactivity in the package is used to confirm the risk of exposure due to an accident when transporting and handling GFRW. Also, the evaluated exposure dose was compared with the domestic legal effective dose limit to confirm safety. Q-system is an evaluation method that can derive doses according to exposure pathway (EP) and radioactivity. Exposure doses are calculated by dividing into five EP: QA, QB, QC, QD, and QE. Since the Q-system is used to set the limit of radioactivity that the dose limits is satisfied to nearby workers even in package handling accidents, the following conservative assumptions were applied to each EP. QA, QB are external EP of assuming complete loss of package shielding by accident and radiation are received for 30 minutes at 1 m, QC is an internal EP that considers the fraction of nuclides released into the air and breathing rate during accident, and QD is an external EP that skin contamination for 5 hours. Finally, QE is an internal and external EP by inert gases (He, Ne, Ar, Kr, Xe, Rn) among the released gaseous nuclides, but the QE pathway was excluded from the evaluation because the corresponding nuclide was not present in the GFRW products used for evaluation. In this study, the safety evaluation of GFRW was performed package shielding loss and radioactive material leakage due to single package accident according to assumption of four pathways, and the nuclide information used the average radioactivity for each nuclide of GFRW. As a result of the dose evaluation, QA was evaluated as 2.73×10−5 mSv, QB as 1.06×10−6 mSv, QC as 7.53×10−3 mSv, and QD as 2.10×10−6 mSv, respectively, and the total exposure dose was only 7.56×10−3 mSv, it was confirmed that when compared to the legal limits of the general public (1 mSv) and workers (20 mSv) 0.756% and 0.038%, respectively. In this study, it was confirmed that the legal limitations of the general public and workers were satisfied evens in the event of an accident as a result of evaluating the exposure dose of nearby targets for package shielding loss and radioactive material leakage while transporting GFRW. In the future, the types of accidents will be subdivided into falling, fire, and transportation, and detailed evaluation will be conducted by applying the resulting accident assumptions to the EP.

저자
  • Seung-Won Hwang(Korea Nuclear Engineering & Service, 65, Myeongdal-ro, Seocho-gu, Seoul) Corresponding author
  • Wooyong Kim(Korea Nuclear Engineering & Service, 65, Myeongdal-ro, Seocho-gu, Seoul)
  • Moonoh Kim(Korea Nuclear Engineering & Service, 65, Myeongdal-ro, Seocho-gu, Seoul)
  • Sang June Park(Korea Hydro & Nuclear Power Company Limited, 1655, Bulguk-ro, Munmudaewang-myeon, Gyeongju-si, Gyeongsangbuk-do)
  • Su-il Bang(Korea Hydro & Nuclear Power Company Limited, 1655, Bulguk-ro, Munmudaewang-myeon, Gyeongju-si, Gyeongsangbuk-do)