The Kori Unit 1 and Wolsong Units 1, commercial reactors in South Korea, were permanently shut down due to the expiration of their design lifetime. Therefore, nuclear power plants that have been permanently shut down must be dismantled, and the site must be finally released after removing the remaining radionuclides. Domestic regulatory standards for site remediation should not exceed 0.1 mSv per year based on effective dose. In addition, it is necessary to calculate the preliminary Derived Concentration Guideline Levels (DCGL) to prove that the conditions are met. Therefore, in this study, the input factor considering the geological characteristics of the site of Kori Unit 1 was investigated, and the preliminary Derived Concentration Guideline Levels were calculated and compared with the results of previous studies. As a result of comparative analysis, 60Co, 134Cs, and 137Cs, which are gamma-ray emitting radionuclides, had similar values to DCGL of previous studies A and B. However, 63Ni, a beta-rayemitting nuclide, was 5.94×104 Bq·g−1 in this study and 8.47×101 Bq·g−1in previous study B, resulting in a difference of about 700 times. In addition, in the case of 90Sr, this study and previous study A were derived similarly, but this study was 5.34×101 Bq·g−1 and previous study B was 1.18×10−1 Bq·g−1, resulting in a difference of about 450 times. This difference is judged to be because, unlike this study using only the industrial worker scenario, in the case of previous study B, the resident farmer scenario was mixed and used, which considers the internal exposure caused by ingestion of food produced in the contaminated area. In this study, it was confirmed that DCGL according to the change of geological factors of the site did not have a significant effect on gamma-ray-emitting nuclides. However, it was confirmed that considering the intake of food affects the DCGL of beta-ray-emitting nuclides. Therefore, there is a need to conduct future studies applying intake input factors that meet domestic conditions.