논문 상세보기

Drying Experiments Using a Lab-scale Vacuum Drying Apparatus

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430730
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

There is a need to develop a quantitative residual water measurement method to reduce the measurement uncertainty of the amount of residual water inside the canister after the end of vacuum drying. Therefore, a lab-scale vacuum drying apparatus was fabricated and its characteristics were evaluated by performing vacuum drying experiments based on the amount of residual water, vacuum drying experiments based on the surface area of residual water, and vacuum drying experiments based on the energy of residual water using the lab-scale vacuum drying apparatus. As a result of the vacuum drying experiments, if the surface area of water is the same, the greater the amount of water, the greater the energy of the water, so more energy is transferred to the surface of the water. Therefore, more water evaporated, and the average temperature of the remaining water was higher. The larger the surface area of the water, the more energy it takes to vaporize it, so the faster it dries and the faster the drying time. Before ice formed, energy was actively transferred by conduction heat transfer from the top, center, and bottom of the water to provide the energy needed for the water to evaporate from the surface. However, no energy was transferred from the water just before it turned into ice. When vacuum drying water, you can dry more water if you dry it slowly over a longer period of time. Therefore, by using a vacuum pump with a low flow rate, the pressure can be lowered slowly to prevent ice from freezing, thereby improving the drying quantity. It was evaluated that there was a good agreement between the energy used when water evaporated and the energy absorbed from the surroundings to within about 4%. Therefore, if the energy absorbed from the surroundings is known, it is possible to evaluate the amount of water evaporated in vacuum drying.

저자
  • Kyoung-Sik Bang(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Seung-Hwan Yu(Korea Atomic Energy Research Institute (KAERI))
  • Kyung-Wook Shin(SAE-AN Engineering Corp.)
  • Nam-Hee Lee(SAE-AN Engineering Corp.)
  • Gyung-Sun Chae(SAE-AN Engineering Corp.)