검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2023.11 구독 인증기관·개인회원 무료
        When storing spent fuel in a dry condition, it becomes essential to ensure that any remaining moisture bound to the canister and spent fuel is effectively removed and stored within an inert gas environment. This is crucial for preserving the integrity of the spent fuel. According to the NRC- 02-07-C-006 report, it is advised to reduce pressure gradually or in incremental stages to prevent the formation of ice. In the context of vacuum drying, it is desirable to perform testing using a prototype model; however, utilizing a prototype model can be difficult due to budget constraints. To address this limitation, we designed and constructed a laboratory-scale vacuum drying apparatus. Our aim was to assess the impact of vacuum pump capacity on the drying process, as well as to evaluate the influence of canister volume on drying efficiency. The vacuum drying tests were carried out until the surface temperature of the water inside reached 0.1°C. In the tests focusing on vacuum pump capacity, vacuum pumps with capacities of 100, 200, 400, and 600 liters were employed. The outcomes of these tests indicated that smaller vacuum pump capacities resulted in increased evaporation rates but also prolonged drying times. In the case of drying tests based on canister volume, canisters with volumes of approximately 100 and 200 liters were utilized. The results revealed that larger canister volumes led to longer drying times and lower rates of evaporation. Consequently, if we were to employ an actual dry storage cask for vacuum drying the interior of the canister, it is anticipated that the process would require a substantial amount of time due to the considerably larger volume involved.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The saturation of wet storage facilities constructed and operated within nuclear power plant sites has magnified the significance of research concerning the dry storage of spent nuclear fuel. Not only do wet storage facilities incur higher operational and maintenance costs compared to dry storage facilities, but long-term storage of metal-clad fuel assemblies submerged in aqueous tanks is deemed unsuitable. Consequently, dry storage is anticipated to gain prominence in the future. Nevertheless, it is widely acknowledged that quantitatively assessing the residual water content remains elusive even when employing the apparatus and procedures utilized in the existing dry storage processes. The presence of residual water can only be inferred from damage or structural alterations to the spent nuclear fuel during its dry storage, making precise prediction of this element crucial, as it can be a significant contributor to potential deformations and deterioration. The aforementioned challenges compound the issue of retrievability, as substantial complexities emerge when attempting to retrieve spent nuclear fuel for permanent disposal in the future. Consequently, our research team has established a laboratory-scale vacuum drying facility to investigate the sensitivity of various parameters, including canister volume, pump capacity, water surface area, and water temperature, which can exert thermohydraulic influences on residual water content. Moreover, we have conducted dimensional analysis to quantify the thermohydraulic effects of these parameters and express them as dimensionless numbers. These analytical approaches will subsequently be integrated into predictive models for residual water content, which will be further developed and validated at pilot or full-scale levels. Furthermore, our research team is actively engaged in experimental investigations aimed at fine-tuning the duration of the pressure-holding phase while optimizing the evaporation process under conditions designed to avert the formation of ice caused by abrupt temperature fluctuations. Given that the canister is constructed from acrylic material, we are able to identify, from a phenomenological perspective, the specific juncture at which the boiling phenomenon becomes manifest during the vacuum drying process.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Measuring the amount of water remaining in the canister after drying is critical to ensuring the integrity of Dry Storage. There are many ways to measure residual moisture, but dew point sensors are typically used to measure residual moisture after drying the canister. Because the dew point temperature inside the canister depends on the water vapor partial pressure, the water vapor partial pressure present in the canister can be determined using the dew point temperature. The British Standard (BS1336) proposes a formula for converting dew point temperature into vapor partial pressure. It is possible to validate changes in residual water concentration throughout drying and at the end of drying. It has around 500 ppmv when the dew point temperature hits -73°C at 3 torr. Nuclear Regulatory Commission (US NRC) presented at 3 torr for 30 minutes as a criterion for the suitability of spent nuclear fuel drying. When the canister’s internal pressure is around 1,000 torr and the dryness criteria are met, the moisture concentration for this value is around 3,000 ppmv. We conducted a vacuum drying test of a 57 liter test vessel. It is filled with helium after vacuum drying was completed, and the concentration of residual water is measured by AquaVolt Moisture Analyzer (AMA) connected by a sample flow line. After the vacuum pressure of 1.5 torr was reached, the test vessel was filled to a pressure of 1,140 torr of helium after 30 minutes. The average temperature inside the basket inside the test vessel is 50°C, the dew point temperature is below -70°C, the pressure of test vessel is around 1,000 torr, and the measurement results of the AMA connected to the sample line showed less than 200 ppmv. From these results, we can evaluate that the residual moisture in the test vessel is about 0.01 gram.
        4.
        2023.05 구독 인증기관·개인회원 무료
        As if the wet storage of Spent Nuclear Fuel (SNF) becomes saturated, a transition from wet storage to dry storage could be required. The first process for dry storage is to move SNF from the wet storage into a canister for dry storage, and secondly perform a drying process to remove the moisture in the canister to prevent a potential impact such as deterioration of cladding or corrosion of the interior material. Nuclear Regulatory Commission (NRC) accepts the conditions describing the adequate dryness state that remain below the pressure of 3 Torr for 30 minutes in the drying process. That is, the most pressure of water vapor that may exist inside the canister is 3 Torr. If it is maintained below 3 Torr, it can be determined that the dryness criterion is satisfied. Based on this, relative humidity and dew point trends can be identified. Relative Humidity (RH) is calculated by dividing the vapor pressure by the saturated vapor pressure. Here, if the vapor pressure is fixed at 3 Torr, which is the dryness criterion value, the relative humidity has a value according to the saturated vapor pressure. Saturated vapor pressure is a value that varies with temperature, so relative humidity varies with temperature. On the other hand, the dew point temperature has a value according to the water vapor pressure. Therefore, when the internal temperature of the canister is 120°C and the water vapor pressure is 3 Torr, the relative humidity is 0.2% and the dew point temperature is -4.4°C. We will confirm the suitability of the dryness criterion through the drying tests, and secure a technology that can measure and evaluate the amount of moisture remaining inside the canister.
        5.
        2023.05 구독 인증기관·개인회원 무료
        There is a need to develop a quantitative residual water measurement method to reduce the measurement uncertainty of the amount of residual water inside the canister after the end of vacuum drying. Therefore, a lab-scale vacuum drying apparatus was fabricated and its characteristics were evaluated by performing vacuum drying experiments based on the amount of residual water, vacuum drying experiments based on the surface area of residual water, and vacuum drying experiments based on the energy of residual water using the lab-scale vacuum drying apparatus. As a result of the vacuum drying experiments, if the surface area of water is the same, the greater the amount of water, the greater the energy of the water, so more energy is transferred to the surface of the water. Therefore, more water evaporated, and the average temperature of the remaining water was higher. The larger the surface area of the water, the more energy it takes to vaporize it, so the faster it dries and the faster the drying time. Before ice formed, energy was actively transferred by conduction heat transfer from the top, center, and bottom of the water to provide the energy needed for the water to evaporate from the surface. However, no energy was transferred from the water just before it turned into ice. When vacuum drying water, you can dry more water if you dry it slowly over a longer period of time. Therefore, by using a vacuum pump with a low flow rate, the pressure can be lowered slowly to prevent ice from freezing, thereby improving the drying quantity. It was evaluated that there was a good agreement between the energy used when water evaporated and the energy absorbed from the surroundings to within about 4%. Therefore, if the energy absorbed from the surroundings is known, it is possible to evaluate the amount of water evaporated in vacuum drying.
        6.
        2022.10 구독 인증기관·개인회원 무료
        For Dry Storage of Spent Nuclear Fuel (SNF), all moisture must be removed from the dry storage canister through subjected to a drying process to ensure the long-term integrity. In NUREG-1536, the evacuation of most water contained within the canister is recommended a pressure of 0.4 kPa (3 torr) to be held in the canister for at least 30 minutes while isolated from active vacuum pumping as a measure of sufficient dryness in the canister. In the existing drying process, the determination of drying end point was determined using a dew point sensor indirectly. Various methods are being studied to quantify the moisture content remaining inside the canister. We presented a moisture quantification method using the drying process variables, like as temperature, pressure, and relative humidity operation data. During the drying process, it exists in the form of a mixed gas of water vapor and air inside the canister. At this time, if the density of water vapor in the mixed gas discharged out of the canister by the vacuum pump is known, the mass of water removed by vacuum drying can be calculated. The canister is equipped with a pressure gauge, thermometer and dew point sensor. The density of water vapor is calculated using the pressure, temperature and relative humidity of the gas obtained from these sensors. First, calculate the saturated water vapor pressure, and then calculate the humidity ratio. The humidity ratio refers to the ratio of water vapor mass to the dry air mass. After calculating the density of dry gas, multiply the density by the humidity ratio to calculate the density of water vapor (kg/m3). Multiply the water vapor density by the volume flow (m3/s) to obtain the mass value of water (kg). The calculated mass value is the mass value obtained per second since it is calculated through the flow data obtained every second, and the amount of water removed can be obtained by summing all the mass values. By comparing this value with the initial moisture content, the amount of moisture remaining inside the canister can be estimated. The validity of the calculations will be verified through an experimental test in the near future. We plan to conduct various research and development to quantify residual water, which is important to ensure the safety of the drying process for dry storage.
        7.
        2022.05 구독 인증기관·개인회원 무료
        To dry storage of spent nuclear fuel withdrawn the wet storage, all moisture inside the dry storage container must be removed to ensure the long-term integrity and retrievability. Substantial amounts of residual water in dry storage container may have potential impacts on the fuel, cladding, and other components in the dry storage system, such as fuel degradation and cladding corrosion, embrittlement, and breaching. The drying could perform as a vacuum drying process or a forced helium dehydration process. In NUREG-1536, the evacuation of most water contained within the canister is recommended a pressure of 0.4 kPa (3 torr) to be held in the canister for at least 30 minutes while isolated from active vacuum pumping as a measure of sufficient dryness in the canister. Monitoring the moisture content in gas removed from the canister is considered as a means of evaluating adequate dryness. Dew point monitoring and special techniques could be used to evaluate this adequacy. Various studies are continuing for quantitative evaluation of residual moisture inside the dry storage system. Andrawes proposed a methodology for determining trace water contents in gaseous mixtures, utilizing gas chromatography together with a helium ionization source. A microwave plasma source and emission spectrometry were utilized to determine trace amounts of bound water in solid samples using peak areas of atomic oxygen (O) and hydrogen (H) emissions. Bryans measured the gas samples taken from the High Burn-Up Demonstration Cask at three intervals: 5 hours, 5 days, and 12 days after the completion of drying and backfilling in the North Anna power Station. To measure water content, a Vaisala humidity probe was used. Final results indicated that the cask gas water content built up over 12 days to a value of 17,400 ppmv ±10%, equivalent to approximately 100 g of water within the entire cask gas phase. Tahiyats also proposed a methodology that involves a direct current (dc) driven plasma discharge and optical emission spectroscopy for detecting and quantifying water vapor in a flowing gas stream under both trace and high water vapor loading conditions. For detecting water vapor concentration, the emission from H at 656.2 nm was employed. The H emission is the red visible spectral line generated by a hydrogen atom when an electron falls from the third lowest to the second lowest energy level, this suggests that the normalized H intensity can be used as a marker for water vapor detection and quantification. Several of the attempts are continuing to quantify water contents in dry storage system. Lessons learned by Case studies would be provided insights into how to improve future measurements.
        1 2