The acceptance criteria for low and intermediate level radioactive waste disposal facilities in Korea to regulate that homogeneous waste, such as concentrated waste and spent resin, should be solidified. In addition, solidification requirements such as compressive strength and leaching test must be satisfied for the solidified radioactive waste solidified sample. It is necessary to develop technologies such as the development of a solidification process for radioactive waste to be solidified and the characteristics of a solidification support. Radioactive waste solidification methods include cement solidification, geopolymer solidification, and vitrification. In general, low-temperature solidification methods such as cement solidification and geopolymer solidification have the advantage of being inexpensive and having simple process equipment. As a high-temperature solidification method, there is typically a vitrification. Glass solidification is generally widely used as a stabilization method for liquid high-level waste, and when applied to low- and intermediate-level radioactive waste, the volume reduction effect due to melting of combustible waste can be obtained. In this study, the advantages and disadvantages of the solidification process technology for radioactive waste and the criteria for accepting the solidified material from domestic and foreign disposal facilities were analyzed.