This study aimed to develop a solid self-nanoemulsifying drug delivery system (solid-SNEDDS) to enhance the formulation of ketoconazole (KTZ), a BCS Class II drug with poor solubility. Ketoconazole, which is insoluble above pH 3, requires solubilization for effective delivery. This SNEDDS comprises oil, surfactant, and co-surfactant, which spontaneously emulsify in the gastrointestinal tract environment to form nanoemulsions with droplet sizes less than 100 nm. The optimal SNE-vehicle composition of oleic acid, TPGS, and PEG 400 at a 10:80:10 weight ratio was determined based on the smallest droplet size achieved. This composition was used to prepare liquid SNEDDS containing ketoconazole. The droplet size and polydispersity index (PDI) of the resulting liquid SNEDDS were analyzed. Subsequently, solid-SNEDDS was fabricated using a spray-drying method with solidifying carriers such as silicon dioxide, crospovidone, and magnesium alumetasilicate. The physicochemical properties of the solid-SNEDDS were characterized by scanning electron microscopy and powder X-ray diffraction, and its solubility, droplet size, and PDI were evaluated. In particular, the solid-SNEDDS containing ketoconazole and crospovidone in a 2:1 weight ratio exhibited significantly enhanced solubility, highlighting its potential for improved medication adherence and dissolution rates.
Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.
Microstructural characteristics of directionally solidified René 80 superalloy are investigated with optical microscope and scanning electron microscope; solidification velocity is found to change from 25 to 200 μm/s under the condition of constant thermal gradient (G) and constant alloy composition (Co). Based on differential scanning calorimetry (DSC) measurement, γ phase (1,322 oC), MC carbide (1,278 oC), γ/γ' eutectic phase (1,202 oC), and γ' precipitate (1,136 oC) are formed sequentially during cooling process. The size of the MC carbide and γ/γ' eutectic phases gradually decrease with increasing solidification velocity, whereas the area fractions of MC carbide and γ/γ' eutectic phase are nearly constant as a function of solidification velocity. It is estimated that the area fractions of MC carbide and γ/γ' eutectic phase are determined not by the solidification velocity but by the alloy composition. Microstructural characteristics of René 80 superalloy after solid solution heat-treatment and primary aging heat-treatment are such that the size and the area fraction of γ' precipitate are nearly constant with solidification velocity and the area fraction of γ/γ' eutectic phase decreases from 1.7 % to 0.955 %, which is also constant regardless of the solidification velocity. However, the size of carbide solely decreases with increasing solidification velocity, which influences the tensile properties at room temperature.
In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE)..
Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
When manufacturing die casting mold, generally, the casting layout design should be considered based on the relations of injection system, casting condition, gate system, and cooling system. According to the various relations of the conditions, the location of product defects was differentiated. High-qualified products can be manufactured as those defects are controlled by the proper modifications of die casting mold with keeping the same conditions. In this research, Computer Aided Engineering (CAE) simulation was performed with the several layout designs in order to optimize the casting layout design of an automotive part (Housing). In order to apply them into the production die-casting mold, the simulation results were analyzed and compared carefully. With the filling process, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflow. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system. The simulation results were also applied into the production die-casting mold in order to compare the results and verify them with the real casting samples.
The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuOlimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at -25℃<, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at 500℃ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.
This research developed ultra-pressure pump main body by using ductile cast iron FCD500, conducted quantitative analysis on following phenomenon of flow or solidification processing in cast processing for improvement of cast device, after extracting model from cast concluded as follows by brinel hardness test. after selecting the ideal condition of cast and it applied to cast of real product shape, discovered the ideal filling processing under the condition that temperature of molten metal was between 1300℃ and 1280℃. and after finishing filling, solidification was commenced rapidly when percentage of solidification completion was between 40%~50%, at that moment, the termperature was measured 1100℃. moreover under the condition of temperature below 900℃, keeping temperature on the center of parts for a certain period of time brings stability of stabilization of heat in parts and organizational stabilization of ductile cast iron. As the results of the casting method design, it was that the ductile cast parts of pump main body was obtained as the maximum HB of 220 was recorded and good test results were achieved
The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.
Directional solidification experiments were carried out at 1-300 μm/sec solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the γ/γ' eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the γ/γ' phase, known to be eutectic, showed γ' cells with a γ intercellular network, and this γ/γ' was composed of coarse and fine γ/γ' regions. In this study, it is suggested that the γ/γ' phase was a coupled peritectic.The solidification procedure of the γ/γ' between dendrites is also discussed.
Austenite precipitation behavior was studied with solidification rates and alloying contents, N and Cr, in duplex stainless steels by directional solidification. Directional solidification experiments were carried out with solidification rates, 1~100mm/s, and N and Cr contents, 0~0.27wt.%, 25~28wt.% respectively, in a duplex stainless steel, CD4MCU. As the solidification rate increases, the dendrite spacing reduced and the austenite phase in the ferrite matrix became finer. The volume fraction of austenite phase increased and its shape went to be round with increasing nitrogen contents in duplex stainless alloys. The Cr alloying element, even though it is a ferrite former, showed to enhance the nitrogen solubility in the alloy and caused the austenite round and finer. Also, Cr was supposed to decrease the austenite volume fraction, but it increased the austenite slightly due to increasing nitrogen solubility during solidification.
Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. and and bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).
In general, water treatment sludge (WTS) had high concentration of heavy metal, thus it made the reuse or recycling of WTS difficult. The optimal solidification conditions for maximum suppression of heavy metal elution from WTS were decided in this study. Under the optimal solidification conditions (i.e., temperature, 320℃; ratio of WTS and MgO, 9:1; solidification time, 1hr), all of heavy metal including aluminum were not detected. Therefore there are no problems for reuse or recycling of WTS which was solidified under the optimal solidification conditions found in the study.