The need for the development of sustainable, efficient, and green radioactive waste disposal methods is emerging with the saturation of spent nuclear waste storage facilities in the Republic of Korea. Conventional radioactive waste management methods like using cement or glass have drawbacks such as high porosity, less chemical stability, high energy consumption, carbon dioxide production, and the generation of secondary wastes, etc. To address this gigantic issue of the planet, we have designed a study to explore the potential of alternative materials having easy processability, low carbon emissions and more chemical stability such as ceramic (hydroxyapatite, HAP) and alkali-activated materials (geopolymers, GP) to capture the simulated radioactive cobalt ions from the contaminated water and directly solidify them at low temperatures. Physical and mechanical properties of HAP alone and 15wt% GP incorporated HAP (HAP-GP- 15) composite were studied and compared. The surface of both materials was fully sorbed with an excess amount of Co(II) ions in the aqueous system. Co(II) sorbed powders were separated from aqueous media using a centrifuge machine operating at 5,000 RPM for 10 minutes and dried at 100°C for 8 hours. The dried powders were then placed in stainless steel molds, and shaped into cylindrical pellets using a uniaxial press at a pressure of 1 metric ton for 1 minute. The pellets were sintered at 1,100°C for 2 hours at a heating rate of 10°C/min. Following this, the water absorption, density, porosity, and compressive strength of the polished pellets were measured using standard methods. Results showed that HAP has a greater potential for decontamination and solidification of Co(II) due to its higher density (2.65 g/cm3 > 1.90 g/cm3), less open porosity (16.2±2.9% < 42.4 ±0.9%) and high compressive strength (82.1±10.2 MPa > 6.9±0.8 MPa) values at 1,100°C compared to that of HAP-GP-15. Nevertheless, further study with different constituent ratio of HAP and GP at various temperatures is required to fully optimize the HAP-GP matrix for waste solidifications.