논문 상세보기

Development of RUCAS: Verfication of Dose Assessment Model for Recycling Scenarios With Shielding Compared With RESRAD-RECYCLE and MicroShield®

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431006
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

RUCAS (Recycling-Underlying Computational Dose Assessment System), a dose assessment program based on the RESRAD-RECYCLE framework, is designed to evaluate dose for recycling scenarios of radioactive waste in metals and concrete. To confirm the validity of the recycling scenarios provided by RUCAS, comparative evaluations will be conducted with RESRAD-RECYCLE for metal radioactive waste recycling scenarios and with MicroShield® for concrete radioactive waste recycling scenarios. In the evaluation of metal recycling scenarios without shielding, RUCAS showed similar results when compared to both MicroShield® and RESRAD-RECYCLE. This validates the function of dose assessments using RUCAS for metal recycling scenarios. However, when shielding was present, RUCAS produced results that were comparable to MicroShield®, but differed from those of RESRAD-RECYCLE. The underestimation of dose values up to 1.66E+08 times difference by RESRAD-RECYCLE could potentially decrease reliability and safety in evaluated doses, further emphasizing the importance of RUCAS. Because validation is also necessary for the expanded calculation capabilities resulting from methodological changes of RUCAS (i.e., various radiation source geometries), based on prior validations, it was determined that additional validations are required for different radiation source materials and shielding conditions. In case where the radiation source and shielding materials were identical, RUCAS and MicroShield® produced similar results according to both the Kalos et al. (1974) and Lin and Jiang (1996) methodologies. This demonstrates that the that differences in methodology are inconsequential when considering the same source and shielding materials. However, when the atomic number of the radiation source materials was larger than that of shielding material (HZ-LZ condition), RUCAS obtained results similar to MicroShield® only for the Kalos et al. (1974) methodology. While Lin and Jiang (1996) methodology yield higher results than MicroShield®. Lastly, in case where the atomic number of the radiation source material was smaller than that of the shielding material (LZ-HZ condition,) both methodologies yielded results comparable to MicroShield®. In conclusion, the validity of RUCAS’s shielding calculations has been verified, confirming improvements in dose assessment compared to RESRAD-RECYCLE. Additionally, we observed that shielding effectiveness calculations differ depending on the methodology of build-up effect. If the validity of these methodologies is confirmed, it is expected that selecting the most advantageous methodology for each condition will enable more rational dose assessments. Consequently, in future research, we plan to evaluate the validity of Lin and Jiang (1996) methodology using particle transport codes based on the Monte Carlo method, such as MCNP and Geant 4, rather than MicroShield®.

저자
  • Ugyu Jeong(Ulsan National Institute of Science and Technology (UNIST))
  • Seungmin Ohk(Ulsan National Institute of Science and Technology (UNIST))
  • Jaeyeong Park(Ulsan National Institute of Science and Technology (UNIST)) Corresponding author