검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        1.
        2023.11 구독 인증기관·개인회원 무료
        Wasteform is the first barrier to prevent radionuclide release from repositories into the biosphere. Since leaching rates of nuclides in wasteform significantly impact on safety assessment of the repository, clarifying the leaching behavior is critical for accurate safety assessment. However, the current waste acceptance criteria (WAC) of the Gyeongju repository only evaluates leachability indexes for Cs, Sr, and Co, which are tracers for nuclear power plant waste streams. Furthermore, ANS 16.1, the current leaching test method used in WAC, applies deionized water (DI) as leachant. However, the interactions between wasteform and groundwater environment in the repository may not be reflected. Therefore, it is necessary to review the current leaching test method and nuclides that may require the extra evaluation of leachability beyond the Cs, Sr, and Co. Tc and I are key nuclides contributing to high radioactive dose in safety assessment due to their high mobility and low retardation factor. The groundwater conditions within the repository, such as pH and Eh significantly affect the chemical form of Tc and I. For example, Tc in H2O system tends to form hydroxide precipitates in neutral pH condition and TcO4 - in strong alkaline environments according to the Pourbaix diagram. In case of I, it generally exists in the form of I-, while it exists as IO3 - as Eh increases. Although the current leaching test at the Gyeongju repository applies DI as a leachant, the actual repository is expected to have a highly alkaline environment with a substantial amount of various ions in the groundwater. Consequently, the leaching behavior in the ANS 16.1 test and the actual disposal condition is different. Thus, it is necessary to analyze the leaching behavior of Tc and I with reflecting the actual disposal environment. In this study, the leaching behavior of Tc and I is investigated by following ANS 16.1 leaching test method. The solidified waste specimens containing 10 mmol of Re and I were manufactured with cement, which is widely used as a solidification material. Re was applied instead of Tc, which has similar chemical behavior to Tc, and NH4ReO4 and NaI were used as surrogates for Re and I. As a leachant, deionized water and cement-saturated groundwater were prepared and the concentration of nuclides in the leachant is analyzed by ICP-OES. As the result of this study, experimental data can be applied to improve the WAC and disposal concentration standards in the future.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Low- and intermediate level waste (LILW) repository in Gyeongju, Korea is in operation and the radioactive waste should satisfy the waste acceptance criteria (WAC) of the repository. Among the WAC of the Gyeongju LILW repository, the leachability index criterion is considered to be the criterion that is directly related to the isolation of the radionuclides from biosphere. Cesium, strontium, and cobalt should satisfy the leachability index larger than six by following the ANS 16.1 leaching test method. Several research were performed for the leachability index of Cs, Sr, and Co by following the ANS 16.1 leaching test method. However, the test condition of the previous research is expected to be different to the condition of the actual waste. Due to the radioactivity of the radionuclide such as Cs, Sr and Co, most of the research applied the surrogate of those radionuclides. The concentration of those nuclides was generally measured by the inductively coupled plasma (ICP) equipment, however, high concentration compared to the disposal limit of those nuclides due to the detection limit of the ICP was applied. From the Freundlich and Langmuir adsorption isotherms, the adsorption of the nuclides differs according to the concentration of the nuclides. As the leachability index of the nuclides is affected by the adsorption of the nuclides on the binding material, the effect of nuclide concentration is expected to be not ignorable. Therefore, the leachability index difference according to the nuclide concentration should be compared to avoid over- or underestimation of the leachability index. In this study, the difference in the leachability index according to the concentration of nuclides is aimed to be checked. Cs, Sr, and Co, which should satisfy the leachability index criterion in the WAC of the Gyeongju repository, were selected as target nuclides. Three concentrations were selected to compare the leachability index: 0.1 mol, 0.001 mol and below the regulatory exemption concentration. The concentration of non-radioactive nuclides in the leachant was measured by ICPOES and ICP-MS while the concentration of radionuclides was measured by HPGe. The result of this study can be applied as background data enhancing the WAC or disposal concentration limit of the radionuclides in Gyeongju LILW repository.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Currently, Korea is considering a disposal system based on Sweden’s KBS-3 model to dispose of high-level waste. The disposal system uses a multi-barrier concept to protect high-level waste with canister, buffer, backfill, and natural rock. In Korea, copper and iron are being considered for external and internal canisters, and bentonite is being considered as a buffer material. This is a similar choice to many overseas disposal systems. However, unlike the rolling, extrusion, and forging manufacturing methods being considered overseas for manufacturing external canister, domestic research is currently underway on manufacturing external copper canister using cold spray coating. The canister manufacturing method may vary depending on unit cost and manufacturing convenience. However, the properties of metal vary slightly depending on the manufacturing method of the metal. In this case, the characteristics of the canister may vary slightly depending on the canister manufacturing method, and eventually the corrosion resistance may also vary slightly. In order to understand how the copper canister manufacturing method affects corrosion resistance, corrosion rates were calculated and compared through electrochemical corrosion experiments at domestic groundwater ion concentration.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The solid-state chemistry of uranium is essential to the nuclear fuel cycle. Uranyl nitrate is a key compound that is produced at various stages of the nuclear fuel cycle, both in front-end and backend cycles. It is typically formed by dissolving spent nuclear fuel in nitric acid or through a wet conversion process for the preparation of UF6. Additionally, uranium oxides are a primary consideration in the nuclear fuel cycle because they are the most commonly used nuclear fuel in commercial nuclear reactors. Therefore, it is crucial to understand the oxidation and thermal behavior of uranium oxides and uranyl nitrates. Under the ‘2023 Nuclear Global Researcher Training Program for the Back-end Nuclear Fuel Cycle,’ supported by KONICOF, several experiments were conducted at IMRAM (Institute of Multidisciplinary Research for Advanced Materials) at Tohoku University. First, the recovery ratio of uranium was analyzed during the synthesis of uranyl nitrate by dissolving the actual radioisotope, U3O8, in a nitric acid solution. Second, thermogravimetric-differential thermal analysis (TG-DTA) of uranyl nitrate (UO2(NO3)2) and hyper-stoichiometric uranium dioxide (UO2+X) was performed. The enthalpy change was discussed to confirm the mechanism of thermal decomposition of uranyl nitrate under heating conditions and to determine the chemical hydrate form of uranyl nitrate. In the case of UO2+X, the value of ‘x’ was determined through the calculation of weight change data, and the initial form was verified using the phase diagram for the U-O system. Finally, the formation of a few UO2+X compounds was observed with heat treatment of uranyl nitrate and uranium dioxide at different temperature intervals (450°C-600°C). As a result of these studies, a deeper understanding of the thermal and chemical behavior of uranium compounds was achieved. This knowledge is vital for improving the efficiency and safety of nuclear fuel cycle processes and contributes to advancements in nuclear science and technology.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Molten salt is one of the promising medium materials for molten salt reactors and energy storage systems. Molten salt is advantageous for better physical properties such as low melting point and high boiling point, high energy capacity, high thermal conductivity, and high thermal stability than other medium materials such as water or liquid metals. However, the corrosivity of the molten salt is one of the main factors that disturbs the various applications of the molten salt. On the other hand, metallic 3-D printing technologies have developed by leaps and bounds over the past 20 years and show potential for use in cutting-edge industries such as aerospace and military purposes. However, the biggest problem of 3-D printed products is that the mechanical and physical properties are very weak along the laminated plane that was generated during the manufacturing process. In particular, other research showed that corrosion is vulnerable through the laminated surface, and corrosion along the laminated plane is not completely mitigated through a general heat treatment process although the microstructure of the surface is evaluated to be partially mitigated by the heat treatment. In this study, molten salt corrosion behaviors of simple Ni-based alloy with a composition of 80Ni- 20Cr were analyzed. Ni-based alloys were fabricated by casting and 3-D printing, and some of the 3-D printed specimens were thermally treated at 1,273 K for 1 hour to examine the effects of heat treatment on corrosion behaviors. In molten eutectic NaCl-MgCl2 melts at 973 K, Ni-based alloys were corroded for 1, 3, 7, and 28 days and their microstructural changes were analyzed by SEM-EBSD-EDS and OM. The corrosion behaviors of the alloy were also evaluated by the salt composition measured with ICPOES. 3-D printed alloy with post-treatment showed more resistivity to the molten salt corrosion than as-fabricated 3-D printed alloy. However, the corrosion rate of the 3-D printed specimen after heat treatment was still higher than that made by casting.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Zirconium(Zr) alloys are commonly used in the nuclear industry for applications such as fuel cladding and pressure tubes. To minimize the levels and volumes of radioactive waste, molten salts have been employed for decontaminating Zr alloys. Recently, a two-step Zr metal recovery process, combining electrolysis and thermal decomposition, has been proposed. In the electrolysis process, potentiostatic electrorefining is utilized to control the chemical form of electrodeposits(ZrCl). Although Zr metals are expected to dissolve into molten salts, reductive alloy elements can also be co-dissolved and deposited on the cathode. Therefore, a better understanding of the anodic side’s response during potentiostatic electrorefining is necessary to ensure the purity of recovered Zr and long-term process operation. As the first step, potentiodynamic polarization curves were obtained using Zr, Nb, and Zr-Nb alloy to investigate the anodic dissolution behavior in the molten salts. Nb, which has a redox potential close to Zr, and Zr exhibit active or passivation dissolution mechanisms depending on the potential range. It was confirmed that Zr-Nb alloy also has a passivation region between -0.223 to -0.092 V influenced by the major elements Zr and Nb. Secondly, active dissolution of Zr-Nb was performed in the range of -0.9 to -0.6 V. The dissolution mechanism can be explained by percolation theory, which is consistent with the observed microstructure of the alloy. Thirdly, passivation dissolution of Zr, Nb, and Zr-Nb alloy was investigated to identify the pure passivation products and additional products in the Zr-Nb alloy case. K2ZrCl6 and K3NbCl6 were identified as the pure passivation products of the major elements. In the Zr-Nb alloy case, additional products, such as Nb and NbZr, produced by the redox reaction of nanoparticles in the high viscous salt layer near the anode, were also confirmed. The anodic dissolution mechanism of Zr-Nb alloy can be summarized as follows. During active dissolution, only Zr metal dissolves into molten salts by percolation. Above the solubility near the anode, passivation products begin to form. The anode potential increases due to the disturbance of passivation products on ion flow, leading to co-dissolution of Nb. When the concentration of Nb ion exceeds the solubility, a passivation product of Nb also forms. In this scenario, a high viscous salt layer is formed, which traps nanoparticles of Zr metal, resulting in redox behavior between Zr metal and Nb ion. Some nanoparticles of Zr and Nb metal are also present in the form of NbZr.
        7.
        2023.05 구독 인증기관·개인회원 무료
        A molten salt reactor (MSR) is a conceptual nuclear reactor that uses molten salt with liquid fuel as its primary coolant. Based on the thermophysical and neutronic properties, MSR has advantages such as high efficiency, safety, combustion of transuranic (TRU) elements, and availability of miniaturization and on-power refueling. Various research on MSR such as system development, neutronic analysis, material development, and molten salt property analysis has been conducted, but the biggest problem is the molten salt corrosion. The molten salt corrosion on structural materials can be explained by two processes; electrochemical and chemical reactions. The reduction of oxidative ions such as fuel and TRU elements is one of the major causes of molten salt corrosion. Contamination by humidity and oxygen is also known as the accelerating factor of molten salt corrosion. Also, molten salt corrosion behaviors on structural material deteriorate when dissimilar alloys are introduced in the molten salt system. Various techniques to mitigate molten salt corrosion in fluoride system has been developed, but these are not well-verified in chloride system. In this research, various methodologies to mitigate molten salt corrosion are studied. The corrosion behaviors of 80Ni-20Cr alloy in molten eutectic NaCl-MgCl2 salt at 973 K are analyzed with various applications such as salt purification, sacrificial metal injection, and salt redox potential control. Oxygen and water impurities that can accelerate molten salt corrosion have been removed by electrochemical and chemical methods; Applying the reduction potential for H+/H2 and oxidation potential for O2-/O2, introducing HCl and CCl4 gas, and introducing the metallic Cr and recovering the ionized Cr. Corrosion acceleration/deceleration effects were analyzed when introducing the reducing reagent such as Mg and Nb or oxidizing reagent such as metallic Mo and the effect of inert metallic element (W) was also investigated. The salt potential was controlled by applying the potential to the salt and adjusting the Eu3+/Eu2+ ratio.
        8.
        2023.05 구독 인증기관·개인회원 무료
        RUCAS (Recycling-Underlying Computational Dose Assessment System), a dose assessment program based on the RESRAD-RECYCLE framework, is designed to evaluate dose for recycling scenarios of radioactive waste in metals and concrete. To confirm the validity of the recycling scenarios provided by RUCAS, comparative evaluations will be conducted with RESRAD-RECYCLE for metal radioactive waste recycling scenarios and with MicroShield® for concrete radioactive waste recycling scenarios. In the evaluation of metal recycling scenarios without shielding, RUCAS showed similar results when compared to both MicroShield® and RESRAD-RECYCLE. This validates the function of dose assessments using RUCAS for metal recycling scenarios. However, when shielding was present, RUCAS produced results that were comparable to MicroShield®, but differed from those of RESRAD-RECYCLE. The underestimation of dose values up to 1.66E+08 times difference by RESRAD-RECYCLE could potentially decrease reliability and safety in evaluated doses, further emphasizing the importance of RUCAS. Because validation is also necessary for the expanded calculation capabilities resulting from methodological changes of RUCAS (i.e., various radiation source geometries), based on prior validations, it was determined that additional validations are required for different radiation source materials and shielding conditions. In case where the radiation source and shielding materials were identical, RUCAS and MicroShield® produced similar results according to both the Kalos et al. (1974) and Lin and Jiang (1996) methodologies. This demonstrates that the that differences in methodology are inconsequential when considering the same source and shielding materials. However, when the atomic number of the radiation source materials was larger than that of shielding material (HZ-LZ condition), RUCAS obtained results similar to MicroShield® only for the Kalos et al. (1974) methodology. While Lin and Jiang (1996) methodology yield higher results than MicroShield®. Lastly, in case where the atomic number of the radiation source material was smaller than that of the shielding material (LZ-HZ condition,) both methodologies yielded results comparable to MicroShield®. In conclusion, the validity of RUCAS’s shielding calculations has been verified, confirming improvements in dose assessment compared to RESRAD-RECYCLE. Additionally, we observed that shielding effectiveness calculations differ depending on the methodology of build-up effect. If the validity of these methodologies is confirmed, it is expected that selecting the most advantageous methodology for each condition will enable more rational dose assessments. Consequently, in future research, we plan to evaluate the validity of Lin and Jiang (1996) methodology using particle transport codes based on the Monte Carlo method, such as MCNP and Geant 4, rather than MicroShield®.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Several tests should be performed to estimate the structural and chemical stability of the radioactive waste. Among the tests in Gyeongju LILW repository, the leaching test which follows ANS 16.1 standard test method should be conducted for Cs, Sr, and Co radionuclides and must satisfy leachability index larger than 6 which applies deionized water as a leachant. However, the expected leachant inside the silo is groundwater that contains various ions and a high pH condition is predicted due to the concrete structures inside the silo. According to the chemical environment of the leachant, the chemical form of the radionuclides varies from precipitate to ion. Cobalt precipitates when the leachant has high pH environment which is similar condition to the cement-saturated leachant. Unlike the cobalt, cesium is preferred to exist as ion in the high pH condition. Therefore, the significant effect of the chemical environment of the leachant on the leachability of the radionuclides should be considered for the waste acceptance criteria of the radioactive waste repository. From the ‘NRC, Technical position on the waste form, rev1’, the leaching test method should follow the ANS 16.1 methods by using deionized water as leachant, however, a new leachant showing more aggressive leachability can be applied instead of deionized water. In the other hand, ASTM C1308 leaching test method recommends applying actual groundwater of the repository as a leachant. FT-04-020, the leaching test method of France, suggests the ion composition of the groundwater including the pH value. Therefore, the adequacy of using deionized water as leachant for the leaching test method of Cs, Sr, and Co should be re-examined. In this study, the leaching behavior of Cs, Sr, and Co under the several leachant types is estimated. The cement solidified specimen containing single Cs, Sr, and Co were manufactured. The leaching test following ANS 16.1 was performed by applying deionized water, simulated groundater, and cement-saturated groundwater. As a result, a leachability index difference according to the leachant type was discussed. The result of this study is expected to be a background data that helps understanding the actual leaching behavior of the Cs, Sr, and Co in the Gyeongju LILW repository.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Attempts to use the molten salt system in various aspects such as MSR or energy storage systems are increasing. However, there are limitations in the molten salt-assisted technique due to the harsh corrosiveness of the molten salt, and a more detailed study on salt-induced corrosion is needed to solve this problem. In this study, corrosion behaviors of 80Ni-20Cr alloy in various salt environments such as eutectic NaCl-MgCl2 with NiCl2, CrCl2, and EuCl3 additives were investigated. Meanwhile, the corrosion acceleration effects of 80Ni-20Cr specimens were analyzed for various ceramic materials such as SiC, Al2O3, SiO2, graphite, and BN, and metallic materials such as Ni-based alloy, Fe-based alloy, and pure metals in a molten salt environment. The experiments were conducted at 973 K for up to 28 days, and after the experiment, the microstructural change of the specimen was analyzed through SEM-EDS, and salt condition was analyzed by ICP-OES.
        11.
        2022.05 구독 인증기관·개인회원 무료
        Electroanalytical study for the rotating cylinder electrode in molten LiCl-KCl eutectic salt (58– 42mol%) containing MgCl2 (0.1wt%) at 600°C is conducted. The researches of rotating cylinder electrode have been widely conducted for the century. The advantage of the electrode is that it can mitigate the unintended natural convection by providing a controlled diffusion boundary layer thickness. However, the experimental data for the high temperature molten salts is barely existed. The study adopts the electrochemical techniques such as cyclic voltammetry for the static cell and linear sweep voltammetry for the dynamic cell to calculate the diffusion coefficient. The peak current density and limiting current density are measured according to the scan rate. In order to evaluate the mass transfer under hydrodynamic flow condition, the revolution speeds of cylindrical electrode are varied from 10 rpm to 500 rpm which are corresponded to the Reynolds number of 4 and 185 respectively. The flow regime covers from the laminar to semi-turbulent regime (transient) as the critical Reynolds number Recrit is 200. The limiting current density shows a linear trend with the revolution speed and agrees well with the existing mass transfer correlations. For the extended flow regime, a new mass transfer correlation is suggested as the relation of non-dimensional numbers (Sh = aRebScc) based on the dimensionless analysis.
        12.
        2022.05 구독 인증기관·개인회원 무료
        In nuclear power plants and nuclear facilities, radioactive waste containing hazardous substances (Mixed waste) is continuously generated due to research such as radiochemical study and nuclide analysis. In addition, radioactive waste including heavy metals and asbestos is generated during the dismantling process of nuclear power plants. Mixed wastes have both radiation hazards and chemical hazards, and there’s a possibility of synergistic effects generation. However, in most countries except the United States, there are no regulatory standards for the chemical hazards of mixed waste. The regulations applicable to mixed waste in Korea include the Nuclear Safety Act and the Waste Management Act. The Nuclear Safety Act prohibits the acceptance of hazardous radioactive waste in disposal facilities, but there is no definition or characteristic identification procedure for “hazardous.” The Waste Management Act also does not state the regulation for radioactive waste. In the Gyeongju disposal facility in Korea, the leachate in the disposal facility is expected to be a groundwater saturated with concrete and is expected to irradiated by radioactive waste. On the other hands, most of the non-radioactive waste landfill facilities are built on the surface, and the leachate is expected to be rainwater that reacts with the soil. Due to the differences in leaching environments, there’s a potential to overestimate or underestimate the leaching properties of hazardous substances if the standard leaching test is applied. To show for this, a leaching test simulating disposal facility’s environment were applied to sample waste containing heavy metals. The leaching solution was groundwater collected from the area near the Gyeongju disposal facility, which is then saturated with concrete and adjusted to pH 12.5. In addition, gamma-ray irradiation was conducted during the leaching test to observe changes in the leaching behavior of heavy metals in the actual radioactive waste disposal environment. As a result, lead showed significantly increased leaching compared to the standard test method, and cadmium was not detected in all experimental conditions except heavy irradiation. This study suggested that regulations on the hazardous of mixed waste should be settled, which should be established in sufficient consideration of the types and characteristics of substances contained in the waste.
        13.
        2022.05 구독 인증기관·개인회원 무료
        Low-and intermediate level waste (LILW) should be solidified and satisfy the waste acceptance criteria (WAC) to be disposed of in the LILW repository. The LILW should be uniformly solidified and should maintain its structural stability under the expected condition according to the WAC. Compressive strength of cement solidified waste should satisfy at least 3.44 MPa to be disposed of in the repository. In addition, its compressive strength should satisfy at least 3.44 MPa after the irradiation, immersion and leaching test. The compressive strength test and dimension of test specimen differ according to countries. However, measured compressive strength of solidified waste is affected by geometry of specimen and test condition. Diameter, ratio between diameter and height, and porosity are one of factors that affect to the compressive strength of cement solidified waste. Generally, specimen with larger diameter shows higher value of measured compressive strength. The ratio of height and diameter shows similar tendency to the diameter while larger porosity generally lowers the compressive strength. In other hands, higher compressive strength is expected when the loading rate is higher during the compressive strength test. U.S. is applying loading rate from ASTM C39 (0.25±0.05 MPa) for the compressive strength test while Korea is applying loading rate from KS F 2405 (0.6 MPa·s−1). France applies loading rate following FT-02-010 (0.5 MPa·s−1) for cement solidified waste. As the measured compressive strength increases when the loading rate increases, the effect of loading rate to the compressive strength of cement solidified waste should be assessed by quantification and consider its effect on the sight of regulation. In this study, the effect of geometric parameters of specimen and test condition to the compressive strength are checked by manufacturing specimen by solidifying mock sludge waste with cement. To prevent increasing amount of secondary waste, effects of ratio of height and diameter and porosity to the compressive strength are checked while diameter value is fixed. For loading rate, loading rate from ASTM C39 and KS F 2405 were compared. Existence of significant variance of measured compressive strengths of cement solidified waste are check by performing statistical analysis. Finally, by analyzing the relationship between test condition and measured compressive strength, the test method that measures the compressive strength conservatively is aimed to be derived.
        14.
        2022.05 구독 인증기관·개인회원 무료
        In Korea, it is expected that the decommissioning of nuclear reactors will increase due to the license termination of reactors constructed in the 1960s to the 80s. According to the investigation of KORAD, VLLW accounts for 67.10% of decommissioning wastes and amounts to about 413,336 drums. Due to their huge amount, it is necessary to create an appropriate decommissioning waste management plan even though VLLW is disposed at the second-phase disposal facility of the Gyeongju repository. For efficient reduction in decommissioning wastes, it is required to actively use a clearance of metallic and concrete radioactive wastes. Regulations of nuclear safety and security commission notice that the radioactive waste can be reused or recycled if it meets the clearance criterion, 10 μSv·y−1 for individual dose. Therefore, it is important to develop a computational code which calculate individual doses for each scenario, and determine whether the clearance criterion is satisfied. However, in the case of metallic waste, RESRAD-RECYCLE used in dose assessment for the clearance has no longer been maintained or updated since 2005 and there is no code for recycling of concrete waste. For this reason, a dose assessment code RUCAS (Recycle-Underlying Computational dose Assessment System) has been developed by Ulsan National Institute of Science and Technology (UNIST). A point kernel method is adopted into external dose assessment model to calculate more realistic options, which are various geometries of source, and shielding effect. In the case of internal radiation, equations of internal dose from IAEA are used. This research conducts a verification of dose assessment model for recycling of metallic radioactive waste. RESRAD-RECYCLE is the comparison object and results from RESRAD-RECYCLE validation report are referenced. Targets are 14 recycling scenarios composed up to the smelting metal step of four steps, which are arising scrap metal, smelting scrap metal, and fabrication of metal product, and reusing/recycling of product. Seven isotopes, which are Ac-227, Am-241, Co-60, Cs-137, Pu-239, Sr- 90, and Zn-65, are selected for calculation. Validation results for external dose vary by isotopes, but show acceptable differences. It seems to be caused by difference in the calculation method. In the case of internal dose using same calculation formula, results are exactly matched to RESRAD-RECYCLE for all isotopes. Consequently, RUCAS can conduct functions supported by RESRAD-RECYCLE well and future work will be conducted related to domestic recycling scenarios considering public acceptance, and verification with radiation shielding codes for various geometries of source.
        15.
        2022.05 구독 인증기관·개인회원 무료
        Many countries plan to dispose of spent nuclear fuel through deep geological disposal system. In Korea, a plan is being established for the construction of a deep disposal facility to dispose of highlevel radioactive waste (or spent nuclear fuel). For construction of a deep geological repository, the NSSC (Nuclear Safety and Security Commission) stipulate that detailed technical standards for location, structure, and disposal system of deep geological repository are determined and announced by the Nuclear Safety and Security Commission Notification. Therefore, the regulatory body should carry out the process of regulatory review whether the technical standards developed by the implementer are suitable for the IAEA’s recommendations and guidelines and domestic conditions. In this process, there are many difficulties and uncertainties in terms of time and cost to independently develop safety factors in Korea by referring to the IAEA reports. So, this study intends to investigate and analyze regulatory cases for important safety factors through cases of overseas leading countries in deep geological disposal project. There are two regulatory cases intensively investigated in this study. The first is a regulatory case of regulatory bodies and external experts on the safety case, and the second is a regulatory review case in the process of site selection factor selection. In case of regulatory review of safety case, Sweden and France were selected as the representative target countries. In Sweden, safety cases such as SR-97, SR-Can, and SR-Site have been developed and there are cases of active regulatory review by regulatory agencies in the RD&D process. In France, several safety cases based on sedimentary rocks were developed and the OECD/NEA IRT (International Review Team) was inquired for review for each safety case. The site selection process is divided into a preliminary site selection stage, a site investigation stage, and a site selection and application stage. In each stage, evaluation to select a safe site is carried out using allocated siting factors of that stage. The IAEA SSG-14 report describes aspects that implementers consider in the site selection process and, with this reference, many countries are developing various siting factors and assessment methodologies in consideration of their domestic bedrock condition and geological positions. As a representative example, in Japan which is highly affected by earthquakes and igneous activities, the siting factor is classified into EF (Evaluation Factors) and FF (Favoulable Factors). So, site assessment is conducted preferentially using EF related to earthquakes and igneous activity.
        16.
        2022.05 구독 인증기관·개인회원 무료
        When disposing of spent nuclear fuel, there is a risk of exposure that could exceed the annual allowable dose due to human intrusion after the institutional control period. Therefore, it can be treated with the pyroprocess, but the decontamination factor is not sufficient, and an additional actinide recovery is required because molten waste salt-containing actinide is generated. In the case of reducing the element in the spent molten salt through an electrochemical method using a liquid Bi electrode, it is difficult to separate only the actinide element because the two-element groups are reduced together due to the large concentration difference between the actinide and the rare earth element. Therefore, a process of forming a Bi intermetallic compound using a liquid Bi electrode, which has higher element separation efficiency than a liquid Cd electrode, and physically separating the Bi intermetallic compound using the difference in density of the produced compound has been proposed. For this, it is necessary to understand the properties and density separation of the intermetallic compound to be produced, and experiments were planned and conducted for this purpose. Various metals were added to the molten Bi to form an intermetallic compound, and an analysis device such as SEM was used to determine the intermetallics distribution, composition, and internal structure. As the added metal, Ce is a representative element for lanthanide, and Hf with the most similar intermetallic density, decomposition temperature, and standard reduction potential to U, and U as a substitute element for actinide was adopted. As a result of SEM and EDS analysis, it was confirmed that the separation was made in Bi due to the density difference between the produced intermetallic compounds. A Ce-Bi intermetallic compound was observed in the upper part, Hf at a concentration smaller than the error range was detected, and a Hf-Bi intermetallic compound which containing high concentration of Ce was observed in the lower part. Separation of high-purity Ce seems to be possible in the upper part, and it seems difficult to separate high-purity Hf in the lower part. Therefore, to separate highpurity Hf, an additional process suitable for it seems to be necessary.
        1 2