Molten salt is one of the promising medium materials for molten salt reactors and energy storage systems. Molten salt is advantageous for better physical properties such as low melting point and high boiling point, high energy capacity, high thermal conductivity, and high thermal stability than other medium materials such as water or liquid metals. However, the corrosivity of the molten salt is one of the main factors that disturbs the various applications of the molten salt. On the other hand, metallic 3-D printing technologies have developed by leaps and bounds over the past 20 years and show potential for use in cutting-edge industries such as aerospace and military purposes. However, the biggest problem of 3-D printed products is that the mechanical and physical properties are very weak along the laminated plane that was generated during the manufacturing process. In particular, other research showed that corrosion is vulnerable through the laminated surface, and corrosion along the laminated plane is not completely mitigated through a general heat treatment process although the microstructure of the surface is evaluated to be partially mitigated by the heat treatment. In this study, molten salt corrosion behaviors of simple Ni-based alloy with a composition of 80Ni- 20Cr were analyzed. Ni-based alloys were fabricated by casting and 3-D printing, and some of the 3-D printed specimens were thermally treated at 1,273 K for 1 hour to examine the effects of heat treatment on corrosion behaviors. In molten eutectic NaCl-MgCl2 melts at 973 K, Ni-based alloys were corroded for 1, 3, 7, and 28 days and their microstructural changes were analyzed by SEM-EBSD-EDS and OM. The corrosion behaviors of the alloy were also evaluated by the salt composition measured with ICPOES. 3-D printed alloy with post-treatment showed more resistivity to the molten salt corrosion than as-fabricated 3-D printed alloy. However, the corrosion rate of the 3-D printed specimen after heat treatment was still higher than that made by casting.