In general, systems are developed by repeatedly performing the processes of design, analysis, manufacturing, and performance testing. In particular, systems with temperature, pressure, and flow rate often utilize computational fluid dynamics tools at the design stage. In this paper, we aim to verify the reliability of the analysis results of Solidworks Flow Simulation, which is widely used in heat flow analysis at the design stage. A tube furnace was manufactured, various experiments were performed, and a study was conducted to compare the analysis results. The details of the experiment are as follows. First, an experiment was conducted in which the heater was heated to 900°C without insulating the exposed part of the tube. The detailed contents of the experiment are as follows; - Heating heater and measuring temperature without supplying flow inside the tube, - Tube flow supply (25°C, 15 lpm air) and heater heating/temperature measurement. Second, an experiment was performed in which the exposed part of the tube was insulated (thickness 50 mm) and the heater was heated to 900°C. The detailed contents of the experiment are as follows; - Insulate the outside of the tube except for the flanges at both ends of the tube, and heat the heater and measure the temperature without supplying flow inside the tube. - Insulate the outside of the tube except for the flanges at both ends of the tube, supply flow rate inside the tube (25°C, 15 lpm air) and measure heater heating/temperature. - Insulate the flange of the flow supply section, heat the heater and measure temperature without supplying flow inside the tube. - Insulate the flange of the flow supply section, heat the supply air (277°C, 15 lpm) and measure the temperature using a heating gun without heating the heater. - Insulate the flange of the flow supply section, supply heated air (277°C, 15 lpm) and measure heater heating/temperature. - Insulate the flange of the flow supply section and measure temperature according to heater heating (900°C) and supply temperature (25°C, 277°C 15 lpm). The following results were derived from the experimental and analysis results. - When the exposed part of the tube is insulated, the temperature inside the tube increases and the steady-state power decreases compared to non-insulated. - In areas with insulation, the temperature error between experiment and analysis results is not large. - When flow rate is supplied, there is a large temperature error in experiment and analysis results. - The temperature change after the center of the heater is not large for a temperature change of 15 lpm flow rate. From these results, it can be seen that Solidworks Flow Simulation has a significant difference from the experimental results when there is a flow rate in the tube. This was thought to be because the flow rate acts as a disturbance, and this cannot be sufficiently accounted for in the analysis. In the future, we plan to check whether there is a way to solve this problem.