Uranium (U) is a hazardous material that can lead to both chemical and radiological toxicity, including kidney damage and health issues associated with radiation exposure. In South Korea. In Korea, where shallow weathered granitic aquifers are widespread, several previous studies have reported high levels of radioactivity in shallow groundwater. This ultimately led to the closure of 60 out of 4,140 groundwater production wells in South Korea. In this study, we examined aquifers currently dedicated to drinking water supply and investigated a dataset of 11,225 records encompassing 103 environmental parameters, based on the random forest classifier. This dataset comprises 80 physical parameters associated with the hydraulic system and 23 chemical parameters linked to water-rock interactions. Among the hydraulic parameters, the presence of a coarse loamy texture in the subsoil displayed a notable positive relationship with the concentration of uranium, implying that it plays a significant role in forming redox conditions for the leaching of uranium from host rocks. Fluorine (F), a major product of water-rock interaction in granitic aquifers, exhibited a positive correlation with the distribution of uranium concentrations. The positive relationship between F concentration and uranium levels suggests that the dissolved uranium originates from groundwater interacting with granites. In conclusion, our findings indicate that two key factors, namely the infiltration capacity of soil layers and the aqueous speciation in groundwater resulting from interactions with local solids, play important roles in determining uranium concentrations in granitic aquifers.