The first commercial operation of Kori-1, which commenced in April 1978, was permanently shut down in June 2017, with plans for immediate dismantling. The decommissioning process of nuclear power plants generates a substantial amount of radioactive waste and poses significant radiation exposure risks to workers. Radioactivity is widely distributed throughout the primary coolant system of the reactor, including the reactor pressure vessel (RPV), steam generator (SG), and pressurizer. In particular, the SG has a considerable size and complex geometry, weighing approximately 326 tons and having a volume of 400 m3. The SG tubes are known to contain high levels of radioactivity, leading to significant radiation exposure to workers during the dismantling process. Therefore, this study aims to evaluate the workers’ radiation exposure during the cutting of SG tubes, which account for approximately 95% of the total radiation dose in the SG. Firstly, the CRUDTRAN code, developed to predict the behavior of soluble and particulate corrosion products in a PWR primary coolant system, is used to estimate the radioactive inventory in the SG tubes. Based on decontamination factors (DF) obtained in the SG tubes through overseas experience, the expected reduction in radioactivity during the Kori-1 reactor’s full-system decontamination (FSD) process is considered in the CRUDTRAN results. These results are then processed to estimate the radioactivity in both the straight and bent sections of the tubes. Subsequently, these radioactivity values are used as inputs for the MicroShield code to calculate the worker radiation exposure during the cutting of both straight and bent sections of the tubes. The cutting process assumes that each SG tube section is cut in a separate, shielded area, and the radiation exposure is assessed, taking into account factors such as cutting equipment, cutting length, working hours, and working distance. This study evaluates the worker radiation exposure during the cutting of SG tubes, which are expected to have a significantly high radioactivity due to chalk river unidentified deposit (CRUD). This assessment also considers the reduction in radioactivity within the steam generator tubes resulting from the FSD process. Consequently, it enables an examination of how worker radiation exposure varies based on the extent of FSD. This study may provide valuable insights for determining the scope and extent of the FSD process and the development of shielding methods during the dismantling of SG tubes in the future.