논문 상세보기

Exploring the Reaction Mechanism in Molten Salts Through Real-time Visual Monitoring System

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431542
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

High-temperature molten salts not only demonstrate exceptional thermal and chemical stability but also offer significant advantages in catalyzing chemical reactions. Consequently, they have garnered attention as a promising medium for next-generation nuclear reactors and a wide range of electrochemical processes. Nevertheless, the challenging experimental conditions in molten salts make applying conventional analytical methods to understand reaction mechanisms a formidable task. This underscores the imperative need for more intuitive approaches to investigate molten salt chemistry. One of the simplest yet potent methods involves real-time visual monitoring of the reaction system as chemical reactions progress. In light of this, we have developed an experimental system enabling real-time visual monitoring of the internal dynamics of molten salt media. This system can capture high-resolution videos and images within molten salts, surpassing existing methodologies. We have applied this system in various electrochemical experiments using the molten LiCl-KCl eutectic salt medium. Among them, this study primarily focuses on two challenging experimental scenarios that became comprehensible through our proposed system’s application: (1) the transpassivation of Zr metal and the agglomeration of potassium hexachlorozirconate (K2ZrCl6) solid salt, and (2) the solvation of electrons during the oxidation of Li metal within the molten LiCl-KCl eutectic salt.

저자
  • Han Lim Cha(Korea Atomic Energy Research Institute (KAERI), Korea Advanced Institute of Science and Technology (KAIST)) Corresponding author
  • Jong-Il Yun(Korea Advanced Institute of Science and Technology (KAIST))