논문 상세보기

High Efficiency Adsorption of Selenite in Aqueous Solution Using Metal–Organic Frameworks

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431575
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Selenium (Se), a vital trace element found naturally, plays a pivotal role for human being in low concentrations. Notably, within the spectrum of essential elements, Se possesses the most restricted range between the dietary deficiency (< 40 μg day-1) and the acute toxicity (> 400 μg day-1). Therefore, it is of paramount importance to maintain bioavailable Se levels within permissible limits in our drinking water sources. Among the various Se species, inorganic variants such as selenite (SeO3 2-) and selenate (SeO4 2-) are highly water-soluble, with SeO3 2- being notably more toxic than SeO4 2-. Consequently, the primary focus lies in effectively sequestering SeO3 2- from aquatic environments. Numerous methods have been investigated for SeO3 2- adsorption, including the use of metal oxides and carbon-based materials. Especially, iron oxides have garnered extensive attention due to their water stability and environmentally friendly properties. Nevertheless, their limited surface area and insufficient adsorption sites impose constraints on their efficacy as materials for SeO3 2- removal. Recently, metal–organic frameworks (MOFs), composed of metal centers bridged by organic linkers have increasingly focused as promising adsorbents for SeO3 2- removal, offering significant advantages such as large surface areas, high porosities, and structural versatility. Furthermore, there is a growing interest in defective MOFs, where intentional defects are introduced into the MOF structure. This deliberate introduction of defects aims to enhance the adsorption capacity by increasing the number of available adsorption sites. In this context, herein, we present the Fe-BTC (BTC = 1,3,5-benzenetricarboxylic acid) synthesized via a post-synthetic metal-ion metathesis (PSMM) approach, which is one of the defect engineering methods applied to metal sites. We employ the well-established MOF, HKUST-1, known for its substantial surface area, as the pristine MOF. While the pristine MOF has a crystalline phase, during the PSMM process, Fe-BTC is transformed into an amorphous phase by allowing the introduction of numerous metal defect sites. These introduced metal defect sites serve as Lewis acidic sites, enhancing the adsorption capability for selenite. Furthermore, despite its amorphous nature, Fe-BTC exhibits a substantial surface area and porosity comparable to that of the crystalline pristine MOF. Consequently, Fe-BTC, distinguished by its numerous adsorption sites and its high porosity, demonstrates a remarkable capacity for selenite adsorption.

저자
  • Asong Byun(Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Jinhee Park(Daegu Gyeongbuk Institute of Science and Technology (DGIST)) Corresponding author