In stable continental regions, selecting appropriate ground motions for seismic design and dynamic response analysis presents significant challenges. This study evaluates the liquefaction potential of the Nakdonggang delta region, South Korea, by generating synthetic ground motion scenarios and applying a scenario-based liquefaction assessment approach. We utilized a hybrid broadband ground motion simulation method proposed by Graves and Pitarka (2010, 2015) to create bedrock ground motions for three hypothetical earthquakes (Mw 6.2 and 6.0) occurring along the Dongrae and Miryang faults. The generated synthetic ground motions were used as input for onedimensional nonlinear site response analyses, incorporating shear wave velocity profiles derived from surface wave inversion. The simulated ground motions demonstrated higher responses at short periods and relatively weaker responses at long periods compared to the Korean design spectra. This amplification of long-period components was attributed to the dynamic response of deep sedimentary layers, while high-frequency components were generally deamplified due to damping effects in shallow silty layers. Liquefaction susceptibility was assessed using surface ground motions derived from the site response analyses, following the SPT-based simplified method proposed by Idriss and Boulanger (2008). Results indicated high liquefaction potential across most sites for the Dongrae earthquake scenario, while liquefaction was unlikely for all sites under the Miryang-1 scenario. For the Miryang-2 scenario, liquefaction was predicted at some sites. Overall, liquefaction is expected at PGA values of approximately 0.13 g or higher, with sites exhibiting lower shear wave velocities being more vulnerable to liquefaction