검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        1.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake’s ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.
        4,000원
        2.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members’ yielding and buckling, as well as the crane wheel’s uplifting derailment in operation. The crane’s yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.
        4,000원
        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro 1/2-ro 2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.
        4,300원
        4.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green’s function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.
        4,000원
        5.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs’ input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequencywavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.
        4,200원
        6.
        2021.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.
        4,000원
        7.
        2021.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.
        4,000원
        8.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2004년 5월 29일 발생한 울진해역지진(Mw 5.1)과 관련된 대기 인프라사운드 신호가 철원(진앙 거리 321 km) 및 대전(256 km) 관측소에 기록되었다. 신호의 지속시간은 수 분 이상이며, 음원 방향을 지시하는 후방-방위각은 28 o 이상의 큰 변화를 보였다. 역-투사 방법과 신호 감쇄 보정 결과, 인프라사운드 신호는 삼척-울진-포항까지 연결되는 약 4,600 km2 면적의 지반운동으로 발생하였으며, 음원 최대 크기(BSP)는 11.1 Pa로 계산되었다. 이 결과는 최대지반가속 도(PGA) 자료로 계산한 음원 최대 크기(PSP)와도 부합하고 있으며, 지진 발생 당시 인프라사운드 신호 탐지를 가능케 했던 최소 지반운동은 ~3.0 cm s−2 이상으로 확인되었다. 울진해역지진이 비록 동해 해역에서 발생하였지만, 진앙과 가 까운 강원도 남부-경상북도의 고지대를 따라 전파한 표면파의 지반운동으로 회절 인프라사운드가 효과적으로 발생한 것으로 해석된다. 인프라사운드 관측을 통한 원거리 지진 지반운동 특성 추정 방법은 지진관측망이 설치되어 있지 않거나 관측소 수가 적은 지역을 대상으로 활용이 가능할 것이다.
        4,200원
        9.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.
        4,000원
        10.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Hallux valgus (HV) is a foot deformity developed by mediolateral deviation of the first metatarsophalangeal joint. Although various foot-toe orthoses were used to correct the HV angle, verification of the effects of kinetics variables such as ground reaction force (GRF) through three-dimensional (3D) gait analysis according to the various type of orthoses for HV is insufficient. Objects: This study aimed to investigate the effect of soft and hard types of foot and toe orthoses to correct HV deformity on the GRF in individuals with HV using 3D motion analysis system during walking. Methods: Twenty-six subjects participated in the experiment. Participants had HV angle of more than 15° in both feet. Two force platforms were used to obtain 3D GRF data for both feet and a 3D motion capture system with six infrared cameras was used to measure exact stance phase point such as heel strike or toe off period. Total walk trials of each participant were 8 to 10, the walkway length was 6 m. Two-way repeated measures ANOVA was used to determine the effects of each orthosis condition on the various GRF values. Results: The late anteroposterior maximal force and a first vertical peak force of the GRF showed that the hard type orthosis condition significantly increased GRF compared to the other orthosis conditions (p < 0.05). Conclusion: There were significant effects in GRF values when wearing the hard type foot orthosis. However, the hard type foot orthosis was uncomfortable to wear during walking. Therefore, it is necessary to develop a new foot-toe orthosis that can compensate for these disadvantages.
        4,000원
        11.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.
        4,000원
        12.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.
        4,000원
        13.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The empirical Green’s function method is applied to the foreshock and the mainshock of the 2016 Gyeongju earthquake to simulate strong ground motions of the mainshock and scenario earthquake at seismic stations of seven metropolises in South Korea, respectively. To identify the applicability of the method in advance, the mainshock is simulated, assuming the foreshock as the empirical Green’s function. As a result of the simulation, the overall shape, the amplitude of PGA, and the duration and response spectra of the simulated seismic waveforms are similar with those of the observed seismic waveforms. Based on this result, a scenario earthquake on the causative fault of Gyeongju earthquake with a moment magnitude 6.5 is simulated, assuming that the mainshock serves as the empirical Green’s function. As a result, the amplitude of PGA and the duration of simulated seismic waveforms are significantly increased and extended, and the spectral amplitude of the low frequency band is relatively increased compared with that of the high frequency band. If the empirical Green’s function method is applied to several recent well-recorded moderate earthquakes, the simulated seismic waveforms can be used as not only input data for developing ground motion prediction equations, but also input data for creating the design response spectra of major facilities in South Korea.
        4,000원
        14.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.
        4,000원
        15.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 미국 남캘리포니아 지진센터에서 개발한 물리적 지진모델링 기반 광대역 강지진동 모사 플랫폼( 버전 16.5)을 활용하여, 규모 6.0, 6.5, 7.0 지진에 대한 진도 감쇠 특성 분석을 수행하였다. 지진 발생 위치는 2016년 규모 5.8 경주 지진 진앙 인근을 가정하였으나 지각 전파 모델의 경우 남캘리포니아 강지진동 모사 플랫폼에서 제공하 는 미국의 대표적인 지각 모델 두 개를 사용하였다. 하나는 판 내부를 대표하는 미국 중동부 지역(Central and Eastern United States, CEUS) 모델이고 다른 하나는 판의 경계를 대표하는 미 서부 지역(LA Basin) 모델이다. 버전 16.5 플랫 폼에는 5개의 모델링 방법론이 제시되고 있으며 본 연구에서는 Song 모델과 Exsim 모델을 사용하였다. 동일 규모의 지진이라 하더라도 지진발생 환경이 다른 지역(CEUS vs LA Basin)에서는 같은 진앙 거리에서 진도 2 등급에 가까운 차이가 발생할 수 있음을 본 연구를 통해서 발견하였다. 본 연구에서 나타난 지역별 진도 감쇠 특성의 차이를 감안할 때 한반도에서 좀 더 정밀한 지진재해 평가를 위해서는 지역에 적합한 진도 감쇠 특성을 이해하는 것이 중요할 것으로 판단되며 본 연구는 지역 특화된 진도 감쇠 특성을 고려하지 않을 경우 진도 감쇠 분포의 불확실성 정도를 잘 보여준다.
        4,300원
        16.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distancefrequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.
        4,000원
        17.
        2017.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I – Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively
        4,000원
        18.
        2017.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.
        4,000원
        19.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.
        4,000원
        20.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동 이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선 형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용 하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한 다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선 형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.
        4,000원
        1 2 3