Following the implementation of the Act on the Prevention of Light Pollution Due to Artificial Lighting in 2013, local governments designated lighting environment management zones and conducted assessments of the impacts of light pollution on the environment to ensure compliance with acceptable light emission standards. In addition, according to the Act on the Prevention of Light Pollution Due to Artificial Lighting, local governments conduct and manage light pollution assessments every three years. However, measuring and analyzing during nighttime requires a significant amount of time and labor. Therefore, this research aims to improve the current light pollution environmental impact assessment method by utilizing aerial information from satellite data and establishing a database of light pollution assessment methods, thereby laying the foundation for light pollution management. In this study, a reference light source was installed on the ground, and the luminance measurements of the installed reference light source and the advertising light sources on-site were analyzed to derive brightness values for ground light sources using the optical band (R, G, B) values from aerial information derived from satellite images. The analysis produced predictive equations for light pollution from upward lighting and general advertising lighting. When these equations were applied to residential and commercial areas in the lighting environment management area, the results indicated that the predicted rooftop upward lighting prediction brightness exceeded the acceptable standard of light emission of 800 cd/m2 in residential areas, and the advertisement lighting prediction brightness exceeded the standard of 1,000 cd/m2 in commercial areas.