Autonomous vehicle technology is targeted for commercialization in 2027. However, a mixed traffic environment of conventional vehicles and autonomous vehicles is expected to be inevitable. In mixed traffic, conventional vehicles drive at reduced speeds due to limited visibility, while autonomous vehicles can drive at normal speeds using sensors. The difference in driving speeds between the two vehicles creates a mismatch in traffic flow, and the risk of congestion and accidents is likely to increase. It is necessary to analyze the impact of the interaction between autonomous vehicles and regular vehicles on traffic safety in advance and develop management measures to mitigate it. In this study, we aim to analyze the effect of reducing the speed deviation between general vehicles and autonomous vehicles by providing the driving speed deceleration level information to autonomous vehicles in the event of fog to induce the same traffic flow and improve the safety level accordingly. We examined the method of delivering the driving speed deceleration level information to autonomous vehicles. When providing speed limit information to autonomous vehicles through systems such as VMS, each country has different ways of recognizing regulatory symbols. Due to these differences, it may not be easy to provide regulatory information to overseas vehicles through external systems such as VMS in Korea. For this reason, there is a possibility that autonomous vehicles may violate laws and regulations by not recognizing them properly, and there are still limitations in defining the responsibility for applying laws and regulations between countries. Therefore, we adopted an information provision approach that encourages autonomous vehicles to maintain a harmonious traffic flow with regular vehicles by sharing safe driving speed information to be encouraged at the public center level. To analyze the effectiveness of these safe driving speed management measures, we used a quantitative indicator, the number of observable conflicts, to distinguish the mixing ratio of regular vehicles and autonomous vehicles. The analysis was divided into early (30%), mid (50%), and late (80%) periods of autonomous vehicle introduction. As a result of giving autonomous vehicles the same traffic flow as regular vehicles, the number of collisions decreased by 128 collisions/hour in the early period, 393 collisions/hour in the mid period, and 337 collisions/hour in the late period. This indicates that the interaction between autonomous vehicles and conventional vehicles becomes more complex as the mixing ratio increases, and the effectiveness of the safe speed management measures proposed in this study increases accordingly. These results can be used as an important basis for transportation policy and design.